Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1228386, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609113

RESUMEN

Introduction: B. velezensis strains are of interest in agricultural applications due to their beneficial interactions with plants, notable through their antimicrobial activity. The biocontrol ability of two new lipopeptides-producing B. velezensis strains ES1-02 and EFSO2-04, against fungal phytopathogens of Diaporthe spp., was evaluated and compared with reference strains QST713 and FZB42. All strains were found to be effective against the plant pathogens, with the new strains showing comparable antifungal activity to QST713 and slightly lower activity than FZB42. Methods: Lipopeptides and their isoforms were identified by high-performance thin-layer chromatography (HPTLC) and mass spectrometric measurements. The associated antifungal influences were determined in direct in vitro antagonistic dual culture assays, and the inhibitory growth effects on Diaporthe spp. as representatives of phytopathogenic fungi were determined. The effects on bacterial physiology of selected B. velezensis strains were analyzed by mass spectrometric proteomic analyses using nano-LC-MS/MS. Results and Discussion: Lipopeptide production analysis revealed that all strains produced surfactin, and one lipopeptide of the iturin family, including bacillomycin L by ES1-02 and EFSO2-04, while QST713 and FZB42 produced iturin A and bacillomycin D, respectively. Fengycin production was however only detected in the reference strains. As a result of co-incubation of strain ES1-02 with the antagonistic phytopathogen D. longicolla, an increase in surfactin production of up to 10-fold was observed, making stress induction due to competitors an attractive strategy for surfactin bioproduction. An associated global proteome analysis showed a more detailed overview about the adaptation and response mechanisms of B. velezensis, including an increased abundance of proteins associated with the biosynthesis of antimicrobial compounds. Furthermore, higher abundance was determined for proteins associated with oxidative, nitrosative, and general stress response. In contrast, proteins involved in phosphate uptake, amino acid transport, and translation were decreased in abundance. Altogether, this study provides new insights into the physiological adaptation of lipopeptide-producing B. velezensis strains, which show the potential for use as biocontrol agents with respect to phytopathogenic fungi.

2.
J Fungi (Basel) ; 9(5)2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37233298

RESUMEN

Soybean (Glycine max) acreage is increasing dramatically, together with the use of soybean as a source of vegetable protein and oil. However, soybean production is affected by several diseases, especially diseases caused by fungal seed-borne pathogens. As infected seeds often appear symptomless, diagnosis by applying accurate detection techniques is essential to prevent propagation of pathogens. Seed incubation on culture media is the traditional method to detect such pathogens. This method is simple, but fungi have to develop axenically and expert mycologists are required for species identification. Even experts may not be able to provide reliable type level identification because of close similarities between species. Other pathogens are soil-borne. Here, traditional methods for detection and identification pose even greater problems. Recently, molecular methods, based on analyzing DNA, have been developed for sensitive and specific identification. Here, we provide an overview of available molecular assays to identify species of the genera Diaporthe, Sclerotinia, Colletotrichum, Fusarium, Cercospora, Septoria, Macrophomina, Phialophora, Rhizoctonia, Phakopsora, Phytophthora, and Pythium, causing soybean diseases. We also describe the basic steps in establishing PCR-based detection methods, and we discuss potentials and challenges in using such assays.

3.
Microorganisms ; 10(11)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36363818

RESUMEN

Bacillus strains can produce various lipopeptides, known for their antifungal properties. This makes them attractive metabolites for applications in agriculture. Therefore, identification of productive wild-type strains is essential for the development of biopesticides. Bacillus velezensis FZB42 is a well-established strain for biocontrol of plant pathogens in agriculture. Here, we characterized an alternative strain, B. velezensis UTB96, that can produce higher amounts of all three major lipopeptide families, namely surfactin, fengycin, and iturin. UTB96 produces iturin A. Furthermore, UTB96 showed superior antifungal activity towards the soybean fungal pathogen Diaporthe longicolla compared to FZB42. Moreover, the additional provision of different amino acids for lipopeptide production in UTB96 was investigated. Lysine and alanine had stimulatory effects on the production of all three lipopeptide families, while supplementation of leucine, valine and isoleucine decreased the lipopeptide bioproduction. Using a 45-litre bioreactor system for upscaling in batch culture, lipopeptide titers of about 140 mg/L surfactin, 620 mg/L iturin A, and 45 mg/L fengycin were achieved. In conclusion, it becomes clear that B. velezensis UTB96 is a promising strain for further research application in the field of agricultural biological controls of fungal diseases.

4.
PLoS One ; 16(9): e0257225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34506590

RESUMEN

Diaporthe species are fungal plant pathogens of many important crops. Seed decay is one of the most important diseases on soybean. It is caused by various species of the genus Diaporthe and responsible for significant economic damage. In central Europe the four species D. longicolla, D. caulivora, D. eres, and D. novem are considered the principal species of Diaporthe on soybean. Fast and accurate detection of these pathogens is of utmost importance. In this study four species-specific TaqMan primer-probe sets that can be combined into a quadruplex assay were designed based on TEF sequences. The specificity and efficiency of the primer-probe sets were tested using PCR products and genomic DNA from pure cultures of the four Diaporthe species and other soybean fungal pathogens. Our results indicate that the primer-probe sets DPCL, DPCC, DPCE, and DPCN allow discrimination of D. longicolla, D. caulivora, D. eres, and D. novem, respectively, and can be used to detect and quantify these four Diaporthe species in parallel using quadruplex real-time PCR. In addition, the quadruplex real-time PCR assay was evaluated on different plant materials including healthy and infected soybean seeds or seed lots, soybean stems, and soybean leaves. This assay is a rapid and effective method to detect and quantify Diaporthe species from samples relevant for disease control.


Asunto(s)
Ascomicetos/patogenicidad , Glycine max/microbiología , Enfermedades de las Plantas/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Enfermedades de las Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Glycine max/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA