Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dent Res ; 96(6): 626-632, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28530469

RESUMEN

Bacteria present in the root canal (RC) space following an RC treatment (RCT) can lead to persistent infections, resulting in treatment failure and the need for reintervention or extraction. Currently, there are no standardized methods in use to clinically detect bacterial presence within RC spaces. The use of paper point sampling and fluorescence staining was shown to be a rapid method, able to detect residual bacteria following treatment. The study demonstrated that Calcein acetoxymethyl (AM) proved to be a suitable dye for detecting vital bacteria within mature endodontic biofilms, with an improved sensitivity over colony-forming unit counting in a stressed biofilm model. Furthermore, in a clinical trial with primary RCTs, 53 infected teeth were sampled in vivo, and increased detection of vital cells was found when compared with colony-forming unit counting, highlighting the sensitivity of the technique in detecting low cell numbers. By combining fluorescent staining and microspectroscopy with software-based spectral analysis, successful detection of vital cells from RCs was possible after 5 min of Calcein AM incubation. Application of this technology during RCT has the potential to reduce persistent infections through vital cell detection and additional treatment. Furthermore, this technique could be applied to antimicrobial research and disinfection control in clinical settings ( ClinicalTrials.gov NCT03055975).


Asunto(s)
Técnicas Bacteriológicas/métodos , Biopelículas , Cavidad Pulpar/microbiología , Tratamiento del Conducto Radicular , Carga Bacteriana , Recuento de Colonia Microbiana , Desinfección/métodos , Humanos , Viabilidad Microbiana , Microscopía Fluorescente , Coloración y Etiquetado
2.
Phys Chem Chem Phys ; 18(31): 21710-9, 2016 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-27430158

RESUMEN

We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.

3.
Chem Sci ; 7(2): 1357-1367, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29910892

RESUMEN

Organic aerosol particles (OA) play major roles in atmospheric chemistry, climate, and public health. Aerosol particle viscosity is highly important since it can determine the ability of chemical species such as oxidants, organics or water to diffuse into the particle bulk. Recent measurements indicate that OA may be present in highly viscous states, however, diffusion rates of small molecules such as water are not limited by these high viscosities. Direct observational evidence of kinetic barriers caused by high viscosity and low diffusivity in aerosol particles were not available until recently; and techniques that are able to dynamically quantify and track viscosity changes during atmospherically relevant processes are still unavailable for atmospheric aerosols. Here we report quantitative, real-time, online observations of microscopic viscosity changes in aerosol particles of atmospherically relevant composition, using fluorescence lifetime imaging (FLIM) of viscosity. We show that microviscosity in ozonated oleic acid droplets and secondary organic aerosol (SOA) particles formed by ozonolysis of myrcene increases substantially with decreasing humidity and atmospheric oxidative aging processes. Furthermore, we found unexpected heterogeneities of microviscosity inside individual aerosol particles. The results of this study enhance our understanding of organic aerosol processes on microscopic scales and may have important implications for the modeling of atmospheric aerosol growth, composition and interactions with trace gases and clouds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA