Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(16): e35855, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220978

RESUMEN

This article explores changes in the structural, electronic, elastic, and optical properties of the novel cubic Sr3BCl3 (B = As, Sb) with increasing pressure. This research aims to decrease the electronic band gap of Sr3BCl3 (B = As, Sb) by applying pressure, with the objective of enhancing the optical properties and evaluating the potential of these compounds for use in optoelectronic applications. It has been revealed that both the lattice parameter and cell volume exhibit a declining pattern as pressure increases. At ambient pressure, analysis of the band structure revealed that both Sr3AsCl3 and Sr3SbCl3 are direct band gap semiconductors. With increasing pressure up to 25 GPa the electronic band gap of Sr3AsCl3 (Sr3SbCl3) reduces from 1.70 (1.72) eV to 0.35 (0.10) eV. However, applying hydrostatic pressure enables the attainment of optimal bandgaps for Sr3AsCl3 and Sr3SbCl3, offering theoretical backing for the adjustment of Sr3BCl3 (B = As, Sb) perovskite's bandgaps. The electron and hole effective masses in this perovskite exhibit a gradual decrease as pressure rises from 0 to 25 GPa, promoting the conductivity of both electrons and holes. The elastic properties are calculated using the Thermo-PW tool, revealing that they are anisotropic, ductile, mechanically stable, and resistant to plastic deformation. Importantly, these mechanical properties of both compounds are significantly enhanced under pressure. Optical properties, including the absorption and extinction coefficients, dielectric function, refractive index, reflectivity, and loss function, were calculated within the 0-20 eV range under different pressure conditions. The calculated optical properties highlight the versatility and suitability of Sr3AsCl3 and Sr3SbCl3 perovskites for pressure-tunable optoelectronic devices.

2.
Heliyon ; 10(7): e27581, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38576570

RESUMEN

Even though lead halide perovskites have outstanding physiochemical properties and improved power conversion efficiency, most of these compounds threaten their future commercialization because of their instability and highly toxic nature. Thus, it is preferable to use stable alternative elements rather than lead to make environmentally friendly perovskite material that will have comparable optical and electronic properties to those constructed from Pb-based perovskites. However, devices constructed from lead-free perovskites typically display a lower power conversion efficiency. Applying hydrostatic pressure could be deemed an effective method to alter the physical properties of these compounds. This not only improves their performance in application but also reveals significant correlations between structure and properties. This work uses DFT to investigate the structural, electronic, optical, and elastic properties of non-toxic, francium-based halide perovskites FrXCl3 (X = Ge, Sn) at different levels of hydrostatic pressures that vary from 0 to 10 GPa. The estimated structural parameter's strong correlation with the data from earlier studies ensures the accuracy of the current findings. Pressure causes the Fr-Cl and Ge (Sn)-Cl bonds to shorten and become stronger. The electronic property calculations demonstrated that both compounds are direct band-gap semiconductors. The application of pressure leads to a linear reduction in the band gap (semiconducting to metallic state) and raises the electronic density of states around the Fermi level by forcing the valence band electrons upward, indicating that the optoelectronic device's performance can be tuned and improved. The values of the dielectric constant, absorptivity and reflectivity showed an increasing tendency with pressure. As the pressure applied to the compounds increases, the absorption spectra show a redshift. These findings suggested that the FrXCl3 (X = Ge and Sn) compound becomes more appropriate for usage in optoelectronic applications under pressure. Furthermore, our examination of the mechanical properties indicates that both FrGeCl3 and FrSnCl3 exhibit mechanically stability, and ductility. Interestingly, we observe an increase in ductility as pressure levels rise.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA