Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rep Biochem Mol Biol ; 12(4): 664-673, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39086581

RESUMEN

Background: Pro-inflammatory cytokines play critical roles in cancer pathobiology and have been considered potential targets for cancer management and therapy. Understanding the impact of cancer therapeutics such as 5-fluorouracil (5-FU) on their expression might shed light on development of novel combinational therapies. This study aimed to encapsulate 5-FU into PLGA and evaluate their effects on the expression of pro-inflammatory genes IL-9, IL-17-A, IL-23, and IFN-y; in the HT-29 cells. Methods: PLGA-5-FU NPs were constructed and characterized by Dynamic Light Scattering (DLS) and Atomic Force Microscopy (AFM). The cytotoxicity was evaluated by MTT test and, the IC50 was identified. HT-29 cells were treated with different concentrations of the PLGA-5-FU NPs for 48 hours and, gene expression levels were analyzed by qRT-PCR. Results: DLS and AFM analysis revealed that the prepared PLGA-5-FU NPs were negatively charged spherical-shaped particles with a mean size of 215.9 ± 43.3 nm. PLGA-5-FU NPs impacted the viability of HT-29 cells in a dose- and time-dependent manner. The qRT-PCR results revealed a dose-dependent decrease in the expression of IL-9, IL-17A, IL-23 and IFN-y; genes, and their expressions were significantly different in both 10 and 20 µg/mL treated groups compared to the control. However, although the treatment of HT-29 cells with 20 µg/mL free 5-FU resulted in decreased expression of the studied genes, the differences were not statistically significant compared to the control group. Conclusion: PLGA-5-FU NPs significantly suppressed expression of the IL-9, IL-17A, IL-23 and IFN-y; genes, and the encapsulation of 5-FU into PLGA improved considerably impact of the 5-FU on the HT-29 cells.

2.
EXCLI J ; 21: 772-785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35949493

RESUMEN

Long non-coding RNAs (lncRNA) play critical roles in pathogenesis of neurodegenerative diseases. Human plasma carries lncRNAs that are stable in the blood, and their disease-specific profile have made them valuable biomarkers for some diseases. This study reports screening of the plasma levels of 90 lncRNAs in patients with Alzheimer disease (AD) to find out plasma-based AD biomarkers. Total RNA was isolated from plasma samples of 50 AD and 50 matched healthy controls. The plasma samples of 10 advanced AD patients and 10 matched healthy controls were screened for expression levels of 90 lncRNAs using Human LncRNA Profiler qPCR Array Kit (SBI). Based on the profiling results, lncRNAs BC200, NDM29, NEAT1, FAS-AS1 and GAS5-AS1 were selected for further analysis in all samples and their biomarker potency was evaluated by ROC curve analysis. We further surveyed RNAseq data by in silico analysis. We found that the NEAT1 and BC200 levels in the plasma of the AD patients were significantly higher compared with the control group (P=0.0021, p= 0.02, respectively). ROC curve analysis showed that the plasma level of NEAT1 and BC200 discriminated AD patients from healthy controls with sensitivity of 72 % and 60 %, and specificity of 84 % and 91 % respectively. Moreover, NEAT1 discriminated MCI (60 % sensitivity and 91 % specificity) and advanced-AD patients from healthy controls (73 % sensitivity and 71 % specificity). Besides, plasma level of BC200 discriminated the pre-clinical subjects from healthy controls with 83 % sensitivity and 66 % specificity. A positive correlation was also observed between plasma levels of BC200 with the age patients (r = 0.34, p=0.02). In silico RNAseq data analysis showed that a total of 33 lncRNAs were up-regulated but 13 lncRNAs were down-regulated significantly in AD patients compared with the healthy controls. In conclusion, this study elucidated that the plasma levels of lncRNAs NEAT1 and BC200 might be considered as potential blood-based biomarkers for AD development and progression.

3.
J Mol Neurosci ; 69(3): 351-359, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31264051

RESUMEN

Circulating long noncoding RNAs (lncRNAs) might serve as biomarkers for different pathological conditions. BACE1-AS lncRNA upregulates in the brain of people with Alzheimer's disease (AD) and might be detected in the bloodstream. To reveal if lncRNA BACE1-AS may serve as a blood-based biomarker for AD, we compared its levels in plasma and plasma-derived exosomes between AD (n = 45) and healthy people (n = 36). Exosomes were purified from plasma by Invitrogen™ Total Exosome Isolation Kit and characterized by scanning electron microscopy (SEM) and dynamic light scattering (DLS). Total RNA was extracted from whole plasma, and plasma-derived exosomes using TRIzol® LS or TRIzol® Reagents respectively were then reverse transcribed to the cDNA using PrimeScript II cDNA synthesis kit. The BACE1-AS levels were quantified by real-time PCR, and their biomarker potencies were evaluated using ROC curve analysis. Results obtained verified the presence of BACE1-AS in the plasma samples of both AD and healthy controls. We did not observe any significant differences between the levels of BACE1-AS in the plasma or plasma-derived exosomes of AD and control people. However, there were significant differences between AD subgroups and control in the whole plasma samples. The BACE1-AS level was low in pre-AD subgroup but it was high in full-AD people compared to the healthy controls. Moreover, ROC curve analysis revealed that lncRNA BACE1-AS may discriminate pre-AD and healthy control (75% sensitivity and 100% specificity), full-AD and healthy control (68% sensitivity and 100% specificity), and pre-AD and full-AD subgroups (78% sensitivity and 100% specificity), highlighting its potential as a biomarker for AD development. In conclusion, plasma BACE1-AS level may serve as a potent blood-based biomarker for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/sangre , ARN Largo no Codificante/sangre , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Apolipoproteínas E/genética , Biomarcadores , Exosomas/química , Exosomas/ultraestructura , Femenino , Humanos , Masculino , Pruebas de Estado Mental y Demencia , Microscopía Electrónica de Rastreo , ARN/sangre , Curva ROC , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad
4.
J Oncol ; 2014: 808012, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24659999

RESUMEN

Introduction. Previous studies have shown that stromal-derived factor-1 (CXCL12) and its receptor, CXCR4, play a crucial role in metastasis of various tumors. Similarly, it has been cleared that CXCR4 is expressed on the cell surface of gastric cancers. However, nuclear expression of CXCR4 and its clinical importance have not been yet studied. Materials and Methods. Herein, we studied the expression of CXCR4 in gastric samples from patients with gastric adenocarcinoma as well as human gastric carcinoma cell line, AGS, by employing RT-PCR, immunohistochemistry, and flow cytometry techniques. Results. RT-PCR data showed that CXCR4 is highly expressed on AGS cells. This was confirmed by IHC and FACS as CXCR4 was detected on cell membrane, in cytoplasm, and in nucleus of AGS cells. Moreover, we found that both cytoplasmic and nuclear CXCR4 are strongly expressed in primary gastric cancer and the cytoplasmic pattern of CXCR4 tends to be associated with a shorter overall survival than nuclear staining. In conclusion, we present evidence for the first time that both cytoplasmic and nuclear expression of CXCR4 are detectable in gastric cancer tissues. However, the role of both cytoplasmic and nuclear CXCR4 needs to be further elucidated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA