Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurophysiol ; 84(2): 710-8, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10938298

RESUMEN

In this study, we used sensory neuron specific (SNS) sodium channel gene knockout (-/-) mice to ask whether SNS sodium channel produces the slow Na(+) current ("slow") in large (>40 microm diam) cutaneous afferent dorsal root ganglion (DRG) neurons. SNS wild-type (+/+) mice were used as controls. Retrograde Fluoro-Gold labeling permitted the definitive identification of cutaneous afferent neurons. Prepulse inactivation was used to separate the fast and slow Na(+) currents. Fifty-two percent of the large cutaneous afferent neurons isolated from SNS (+/+) mice expressed only fast-inactivating Na(+) currents ("fast"), and 48% expressed both fast and slow Na(+) currents. The fast and slow current densities were 0.90 +/- 0.12 and 0.39 +/- 0.16 nA/pF, respectively. Fast Na(+) currents were blocked completely by 300 nM tetrodotoxin (TTX), while slow Na(+) currents were resistant to 300 nM TTX, confirming that the slow Na(+) currents observed in large cutaneous DRG neurons are TTX-resistant (TTX-R). Slow Na(+) currents could not be detected in large cutaneous afferent neurons from SNS (-/-) mice; these cells expressed only fast Na(+) current, and it was blocked by 300 nM TTX. The fast Na(+) current density in SNS (-/-) neurons was 1.47 +/- 0. 14 nA/pF, approximately 60% higher than the current density observed in SNS (+/+) mice (P < 0.02). A low-voltage-activated TTX-R Na(+) current ("persistent") observed in small C-type neurons is not present in large cutaneous afferent neurons from either SNS (+/+) or SNS (-/-) mice. These results show that the slow TTX-R Na(+) current in large cutaneous afferent DRG is produced by the SNS sodium channel.


Asunto(s)
Neuronas Aferentes/fisiología , Canales de Sodio/genética , Canales de Sodio/metabolismo , Sodio/metabolismo , Estilbamidinas , Tetrodotoxina/farmacología , Animales , Tamaño de la Célula , Células Cultivadas , Conductividad Eléctrica , Femenino , Colorantes Fluorescentes , Ganglios Espinales/citología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.8 , Neuronas Aferentes/química , Neuronas Aferentes/citología , Técnicas de Placa-Clamp , Piel/inervación
2.
J Neurophysiol ; 83(4): 2431-42, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10758144

RESUMEN

In this study, we examined whether nitric oxide synthase (NOS) is upregulated in small dorsal root ganglion (DRG) neurons after axotomy and, if so, whether the upregulation of NOS modulates Na(+) currents in these cells. We identified axotomized C-type DRG neurons using a fluorescent label, hydroxystilbamine methanesulfonate and found that sciatic nerve transection upregulates NOS activity in 60% of these neurons. Fast-inactivating tetrodotoxin-sensitive (TTX-S) Na(+) ("fast") current and slowly inactivating tetrodotoxin-resistant (TTX-R) Na(+) ("slow") current were present in control noninjured neurons with current densities of 1.08 +/- 0. 09 nA/pF and 1.03 +/- 0.10 nA/pF, respectively (means +/- SE). In some control neurons, a persistent TTX-R Na(+) current was observed with current amplitude as much as approximately 50% of the TTX-S Na(+) current amplitude and 100% of the TTX-R Na(+) current amplitude. Seven to 10 days after axotomy, current density of the fast and slow Na(+) currents was reduced to 0.58 +/- 0.05 nA/pF (P < 0.01) and 0.2 +/- 0.05 nA/pF (P < 0.001), respectively. Persistent TTX-R Na(+) current was not observed in axotomized neurons. Nitric oxide (NO) produced by the upregulation of NOS can block Na(+) currents. To examine the role of NOS upregulation on the reduction of the three types of Na(+) currents in axotomized neurons, axotomized DRG neurons were incubated with 1 mM N(G)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor. The current density of fast and slow Na(+) channels in these neurons increased to 0.82 +/- 0.08 nA/pF (P < 0.01) and 0.34 +/- 0.04 nA/pF (P < 0.05), respectively. However, we did not observe any persistent TTX-R current in axotomized neurons incubated with L-NAME. These results demonstrate that endogenous NO/NO-related species block both fast and slow Na(+) current in DRG neurons and suggest that NO functions as an autocrine regulator of Na(+) currents in injured DRG neurons.


Asunto(s)
Comunicación Autocrina/fisiología , Ganglios Espinales/fisiología , Neuronas Aferentes/enzimología , Óxido Nítrico/metabolismo , Sodio/metabolismo , Animales , Especificidad de Anticuerpos , Axotomía , Electrofisiología , Inhibidores Enzimáticos/farmacología , Femenino , Ganglios Espinales/citología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , NG-Nitroarginina Metil Éster/farmacología , Neuronas Aferentes/química , Neuronas Aferentes/clasificación , Óxido Nítrico Sintasa/análisis , Óxido Nítrico Sintasa/inmunología , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Ratas , Ratas Sprague-Dawley , Nervio Ciático/fisiología , Canales de Sodio/fisiología , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA