Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 827: 137735, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38513935

RESUMEN

Patients with post-stroke hemiplegia often exhibit reduced ability to maintain sitting balance, a crucial factor for predicting prognosis. Galvanic vestibular stimulation (GVS) influences postural control by stimulating vestibular organ. Although several studies have focused on GVS in static postures, no studies have demonstrated the influence of GVS on righting reactions. Therefore, we aimed to investigate the effects of GVS on postural righting reactions in seated patients with stroke-induced hemiplegia. Using a vertical board (VB), righting reactions were induced by tilting the VB at 10° after patients sat for 1 min. Patients adjusted their bodies until feeling vertical upon prompt. Twenty-two left hemiplegic patients with cerebrovascular disease participated, divided into two groups undergoing right cathode GVS (RC-GVS) followed by left cathode GVS or vice versa, preceded by sham stimulation. Centre of pressure and the joint angle were measured. During the postural righting reactions towards the paralysed side, RC-GVS enhanced the righting reactions and moved the mean position on the x-axis (COPx) to the right and the mean position on the y-axis (COPy) to the front. During the postural righting reaction towards the right side, RC-GVS induced resistance against the righting reaction, COPx was deflected to the right, COPy was deflected backward, and the angle of the neck tilt increased. The findings revealed that GVS with anodal stimulation on the paralysed side could promote righting reactions in patients with post-stroke hemiplegia. SIGNIFICANCE STATEMENT: The study findings suggest that using the contralesional placement of the anode promotes righting reactions, and galvanic vestibular stimulation can induce joint movements in the neck and trunk by polarising it to act as resistance against righting reactions.


Asunto(s)
Accidente Cerebrovascular , Vestíbulo del Laberinto , Humanos , Hemiplejía/etiología , Vestíbulo del Laberinto/fisiología , Movimiento , Equilibrio Postural/fisiología , Accidente Cerebrovascular/complicaciones , Estimulación Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA