Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Bot ; 133(2): 287-304, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37832038

RESUMEN

BACKGROUND AND AIMS: HCO3- can be a major carbon resource for photosynthesis in underwater environments. Here we investigate the underlying mechanism of uptake and membrane transport of HCO3- in submerged leaves of Hygrophila difformis, a heterophyllous amphibious plant. To characterize these mechanisms, we evaluated the sensitivity of underwater photosynthesis to an external carbonic anhydrase (CA) inhibitor and an anion exchanger protein inhibitor, and we attempted to identify components of the mechanism of HCO3- utilization. METHODS: We evaluated the effects of the external CA inhibitor and anion exchanger protein inhibitor on the NaHCO3 response of photosynthetic O2 evolution in submerged leaves of H. difformis. Furthermore, we performed a comparative transcriptomic analysis between terrestrial and submerged leaves. KEY RESULTS: Photosynthesis in the submerged leaves was decreased by both the external CA inhibitor and anion exchanger protein inhibitor, but no additive effect was observed. Among upregulated genes in submerged leaves, two α-CAs, Hdα-CA1 and Hdα-CA2, and one ß-carbonic anhydrase, Hdß-CA1, were detected. Based on their putative amino acid sequences, the α-CAs are predicted to be localized in the apoplastic region. Recombinant Hdα-CA1 and Hdß-CA1 showed dominant CO2 hydration activity over HCO3- dehydration activity. CONCLUSIONS: We propose that the use of HCO3- for photosynthesis in submerged leaves of H. difformis is driven by the cooperation between an external CA, Hdα-CA1, and an unidentified HCO3- transporter.


Asunto(s)
Anhidrasas Carbónicas , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo , Fotosíntesis , Aniones/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Dióxido de Carbono/metabolismo
2.
Chemistry ; : e202302000, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37415534

RESUMEN

Invited for the cover of this issue is the group of Yohei Okada at Tokyo University of Agriculture and Technology. The image depicts a series of single-benzene fluorophores. Constructing symmetrical push-pull motifs in combination with restricting bond rotations is the key to creating small yet brightly emitting fluorophores. Read the full text of the article at 10.1002/chem.202301411.

3.
Chemistry ; 29(44): e202301411, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37170938

RESUMEN

Small yet brightly emitting fluorophores should find fundamental and practical applications in both academic and industrial settings. In this report, tetrahydrobenzodifuran is used as the core architecture to create novel single-benzene fluorophores. The key for realizing unique and powerful photophysical properties is the combination of the construction of symmetrical push-pull motifs and the restriction of bond rotations to suppress molecular motions that cause non-radiative transitions.

4.
Chemistry ; 28(65): e202202018, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36000256

RESUMEN

The design of photocatalytic processes is important for a sustainable society. Key to these photocatalytic reactions is electron transfer. This article is focused on titanium dioxide photocatalyzed organic synthesis and the design of a new [2+2] cycloaddition reaction based on the electron transfer process. Electron transfer - not only between the substrate and the photocatalyst but also inter- and intramolecularly - is crucial for the reaction design. Radical cations were generated by the photocatalyst and trapped by alkenes. The resultant cyclobutyl radical cations were immediately reduced by the aryl rings via intramolecular electron transfer to obtain cyclobutane rings. The outcome of the reaction was controlled by substitution of the aryl ring and the linker connecting the aryl ring to the enol ether. The carefully designed substrates were highly effective for photocatalytic cycloaddition.

5.
Front Plant Sci ; 12: 675507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220895

RESUMEN

Hygrophila polysperma is a heterophyllous amphibious plant. The growth of H. polysperma in submerged conditions is challenging due to the low CO2 environment, increased resistance to gas diffusion, and bicarbonate ion (HCO3 -) being the dominant dissolved inorganic carbon source. The submerged leaves of H. polysperma have significantly higher rates of underwater photosynthesis compared with the terrestrial leaves. 4,4'-Diisothiocyanatostilbene-2,2'-disulfonate (DIDS), an anion exchanger protein inhibitor, and ethoxyzolamide (EZ), an inhibitor of internal carbonic anhydrase, repressed underwater photosynthesis by the submerged leaves. These results suggested that H. polysperma acclimates to the submerged condition by using HCO3 - for photosynthesis. H. polysperma transports HCO3 - into the leaf by a DIDS-sensitive HCO3 - transporter and converted to CO2 by carbonic anhydrase. Additionally, proteome analysis revealed that submerged leaves accumulated fewer proteins associated with C4 photosynthesis compared with terrestrial leaves. This finding suggested that H. polysperma is capable of C4 and C3 photosynthesis in the terrestrial and submerged leaves, respectively. The ratio of phosphoenol pyruvate carboxylase to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the submerged leaves was less than that in the terrestrial leaves. Upon anatomical observation, the terrestrial leaves exhibited a phenotype similar to the Kranz anatomy found among C4 plants; however, chloroplasts in the bundle sheath cells were not located adjacent to the vascular bundles, and the typical Kranz anatomy was absent in submerged leaves. These results suggest that H. polysperma performs proto-Kranz type photosynthesis in a terrestrial environment and shifts from a proto-Kranz type in terrestrial leaves to a HCO3 - use photosynthesis in the submerged environments.

6.
Sci Rep ; 9(1): 14866, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31619750

RESUMEN

Phytic acid (PA) is the primary phosphorus (P) storage compound in the seeds of cereals and legumes. Low PA crops, which are considered an effective way to improve grain nutrient availability and combat environmental issues relating to seed P have been developed using mutational and reverse genetics approaches. Here, we identify molecular mechanism regulating PA content among natural rice variants. First, we performed genome-wide association (GWA) mapping of world rice core collection (WRC) accessions to understand the genetic determinants underlying PA trait in rice. Further, a comparative study was undertaken to identify the differences in PA accumulation, protein profiles, and gene expression in low (WRC 5) and high PA (WRC 6) accessions. GWA results identified myo-inositol 3-phosphate synthase 1 (INO1) as being closely localized to a significant single nucleotide polymorphism. We found high rates of PA accumulation 10 days after flowering, and our results indicate that INO1 expression was significantly higher in WRC 6 than in WRC 5. Seed proteome assays found that the expression of INO1 was significantly higher in WRC 6. These results suggest that not only the gene itself but regulation of INO1 gene expression at early developmental stages is important in determining PA content in rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Liasas Intramoleculares/genética , Oryza/genética , Proteínas de Plantas/genética , Semillas/genética , Mapeo Cromosómico , Grano Comestible , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Fosfatos de Inositol/metabolismo , Liasas Intramoleculares/metabolismo , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Ácido Fítico/metabolismo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Semillas/crecimiento & desarrollo , Semillas/metabolismo
7.
AoB Plants ; 11(2): plz009, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30911367

RESUMEN

Hygrophila difformis, a heterophyllous amphibious plant, develops serrated or dissected leaves when grown in terrestrial or submerged conditions, respectively. In this study, we tested whether submerged leaves and ethylene-induced leaves of the heterophyllous, amphibious plant H. difformis have improved photosynthetic ability under submerged conditions. Also, we investigated how this amphibious plant photosynthesizes underwater and whether a HCO3 - transport system is present. We have analysed leaf morphology, measured underwater photosynthetic rates and HCO3 - affinity in H. difformis to determine if there are differences in acclimation ability dependent on growth conditions: terrestrial, submerged, terrestrial treated with ethylene and submerged treated with an ethylene inhibitor. Moreover, we measured time courses for changes in leaf anatomical characteristics and underwater photosynthesis in terrestrial leaves after submersion. Compared with the leaves of terrestrially grown plants, leaf thickness of submerged plants was significantly thinner. The stomatal density on the abaxial surface of submerged leaves was also reduced, and submerged plants had a significantly higher O2 evolution rate. When the leaves of terrestrially grown plants were treated with ethylene, their leaf morphology and underwater photosynthesis increased to levels comparable to those of submerged leaves. Underwater photosynthesis of terrestrial leaves was significantly higher by 5 days after submersion. In contrast, leaf morphology did not change after submergence. Submerged leaves and submerged terrestrial leaves were able to use bicarbonate but submerged terrestrial leaves had an intermediate ability to use HCO3 - that was between terrestrial leaves and submerged leaves. Ethoxyzolamide, an inhibitor of intracellular carbonic anhydrase, significantly inhibited underwater photosynthesis in submerged leaves. This amphibious plant acclimates to the submerged condition by changing leaf morphology and inducing a HCO3 - utilizing system, two processes that are regulated by ethylene.

8.
Org Lett ; 21(7): 2246-2250, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30916982

RESUMEN

Radical cation Diels-Alder reactions by titanium dioxide (TiO2) photocatalysis in lithium perchlorate/nitromethane solution are described. TiO2 photocatalysis promotes reactions between electron-rich dienes and dienophiles, which would otherwise be difficult to accomplish due to electronic mismatching. The reactions are triggered by hole oxidation of the dienophile and are completed by the excited electron reduction of the radical cation intermediate at the dispersed surface in the absence of any sacrificial substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA