Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 388(2): 715-723, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38129124

RESUMEN

Aberrant neuronal activity in the cortex alters microglia phenotype and function in several contexts, including chronic psychologic stress and neurodegenerative disease. Recent findings even suggest that heightened levels of neuronal activity spur microglia to phagocytose synapses, with potential impacts on cognition and behavior. Thus, the present studies were designed to determine if activation of neurons alone-independent of disease or dysfunction-is sufficient to alter microglial phenotype in the medial prefrontal cortex (mPFC), a brain region critical in emotion regulation and cognition. In these studies, we used both an adeno-associated virus-mediated and Cre-dependent chemogenetic [designer receptors exclusively activated by designer drugs (DREADD)] approach to repeatedly activate excitatory pyramidal neurons (CaMKIIa+) neurons in the mPFC. Various molecular, cytometric, and behavioral endpoints were examined. Recurrent DREADD-induced neuronal activation led to pronounced changes in microglial density, clustering, and morphology in the mPFC and increased microglia-specific transcripts implicated in synaptic pruning (e.g., Csf1r, Cd11b). Further analyses revealed that the magnitude of DREADD-induced neuronal activation was significantly correlated with measures of microglial morphology in the mPFC. These alterations in microglial phenotype coincided with an increase in microglial lysosome volume in the mPFC and selective deficits in working memory function. Altogether, these findings indicate that repeated neuronal activation alone is sufficient to drive changes in microglia phenotype and function in the mPFC. Future studies using optogenetic and chemogenetic approaches to manipulate neural circuits need to consider microglial and other nonneuronal contributions to physiologic and behavioral outcomes. SIGNIFICANCE STATEMENT: Microglia are highly attuned to fluctuations in neuronal activity. Here we show that repeated activation of pyramidal neurons in the prefrontal cortex induces broad changes in microglia phenotype; this includes upregulation of pathways associated with microglial proliferation, microglia-neuron interactions, and lysosome induction. Our findings suggest that studies using chemogenetic or optogenetic approaches to manipulate neural circuits should be mindful of indirect effects on nonneuronal cells and their potential contribution to measured outcomes.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Ratones , Masculino , Animales , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Células Piramidales/metabolismo , Corteza Prefrontal/metabolismo , Fenotipo
2.
Drug Alcohol Depend ; 233: 109348, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35176632

RESUMEN

BACKGROUND: Currently, there are no FDA-approved medications for the treatment of psychostimulant (e.g., cocaine) use disorders. Because the GluN2B subunit of the glutamate N-methyl-D-aspartate (NMDA) receptor is an important mediator of addiction-like behaviors, the goal of the current study was to determine if the GluN2B-selective antagonist Ro 63-1908 is efficacious in attenuating cocaine self-administration. METHODS: Adult Sprague Dawley rats (24 males and 11 females) were implanted with indwelling catheters and were trained to self-administer cocaine (0.75 mg/kg/inf). Rats were then trained in a threshold procedure, in which the dose of cocaine decreased across six 6-min blocks (0.75, 0.27, 0.08, 0.03, 0.01, 0.003 mg/kg/inf). This procedure allowed for the quantification of behavioral economic indices of drug self-administration. Following training in the threshold procedure, rats were treated with the GluN2B-selective antagonist Ro 63-1908 (0, 0.1, 0.3, 1.0 mg/kg; s.c.). Rats also received treatments of the NMDA receptor channel blocker MK-801 (0, 0.01, 0.03, 0.06 mg/kg; s.c.). RESULTS: Blocking NMDA receptors decreased initial intake (i.e., consumption during the first block), although Ro 63-1908 and MK-801 increased area under the curve (global measure of demand) and decreased demand elasticity, an effect observed primarily in males. Neither drug affected demand intensity (i.e., consumption of cocaine at a minimally constrained price). CONCLUSIONS: While blocking the NMDA receptor decreases initial intake of cocaine, NMDA receptor antagonists make cocaine more inelastic with increasing price. These results suggest that NMDA receptor antagonists can exacerbate addiction-like behaviors during self-administration during extinction-like conditions that are observed in later blocks of the threshold procedure.


Asunto(s)
Cocaína , Animales , Cocaína/farmacología , Maleato de Dizocilpina/farmacología , Economía del Comportamiento , Femenino , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Autoadministración
3.
Drug Alcohol Depend ; 228: 109079, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600260

RESUMEN

BACKGROUND: Excessive risk taking is a characteristic trait of several psychiatric conditions, including substance use disorders. High risk-taking (HiR) rats self-administer more cocaine compared to low risk-taking (LoR) rats. However, research has not determined if risk taking is associated with enhanced cocaine conditioned place preference (CPP). METHODS: Male and female Sprague Dawley rats (n = 48 each sex) were first tested in the risky decision task (RDT), in which a response on one lever resulted in safe delivery of one food pellet, and a response on a different lever resulted in delivery of two pellets and probabilistic delivery of foot shock. Following RDT training, rats were tested for cocaine CPP. The first session was a pretest that measured rats' preference for three compartments that provided different visual and tactile cues. Rats then learned to associate one compartment with cocaine (either 10.0 mg/kg or 20.0 mg/kg; i.p.) and one compartment with saline (1.0 ml/kg; i.p.) across eight conditioning sessions. Finally, rats explored all three compartments in a drug-free state. RESULTS: Sex significantly moderated the association between risky decision making and cocaine CPP. While increased risk aversion was somewhat positively associated with cocaine CPP in males, increased risk taking was positively correlated with cocaine CPP in females. CONCLUSIONS: These results highlight the moderating role of sex on the relationship between risky decision making and cocaine reward.


Asunto(s)
Cocaína , Animales , Condicionamiento Clásico , Toma de Decisiones , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratas , Ratas Sprague-Dawley , Recompensa
4.
Drug Alcohol Depend ; 225: 108785, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052688

RESUMEN

BACKGROUND: Methamphetamine abuse has increased significantly in recent years. Currently, there are no FDA-approved pharmacotherapies for the treatment of methamphetamine use disorder. The goal of the current study was to determine if the N-methyl-d-aspartate (NMDA) GluN2B-selective antagonist Ro 63-1908 can block the conditioned rewarding effects of methamphetamine as assessed in conditioned place preference (CPP). METHODS: Two main experiments were conducted. In the first experiment, male (n = 24) and female (n = 24) rats received either vehicle or Ro 63-1908 (1.0-10.0 mg/kg) 30 min prior to the posttest to determine if blocking the GluN2B subunit attenuates expression of methamphetamine CPP. In the second experiment, male (n = 18) and female (n = 18) rats received either vehicle or Ro 63-1908 (1.0 or 3.0 mg/kg) 30 min prior to each conditioning session to determine if blocking the GluN2B subunit attenuates acquisition of methamphetamine CPP. RESULTS: Ro 63-1908 (3.0 mg/kg) blocked acquisition of methamphetamine CPP in male rats, but only attenuated CPP in female rats. Ro 63-1908 did not alter expression of CPP in either sex. Increasing the dose of Ro 63-1908 (10.0 mg/kg) failed to block acquisition of CPP in an additional group of female rats (n = 6). A control experiment showed that Ro 63-1908 (3.0 mg/kg) did not produce CPP or conditioned place aversion in male rats (n = 6) or in female rats (n = 6). CONCLUSIONS: The results of this study show that Ro 63-1908 is able to decrease the conditioned rewarding effects of methamphetamine.


Asunto(s)
Metanfetamina , Animales , Condicionamiento Clásico , Femenino , Masculino , Fenoles , Piperidinas , Ratas
5.
Psychopharmacology (Berl) ; 238(1): 133-148, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32936321

RESUMEN

RATIONALE: Risky choice can be measured using the risky decision task (RDT). In the RDT, animals choose between a large, risky option that is paired with probabilistic foot shock and a small, safe option that is never paired with shock. To date, studies examining the neurochemical basis of decision-making in the RDT have focused primarily on the dopaminergic system but have not focused on the glutamatergic system, which has been implicated in risky decision-making. OBJECTIVES: Because glutamate is known to play a critical role in decision-making, we wanted to determine the contribution of the glutamatergic system to performance in the RDT. METHODS: In the experiment, 32 rats (16 male; 16 female) were tested in the RDT. The probability of receiving a foot shock increased across the session (ascending schedule) for half of the rats but decreased across the session (descending schedule) for half of the rats. Following training, rats received injections of the N-methyl-D-aspartate (NMDA) receptor competitive antagonist CGS 19755 (0, 1.0, 2.5, 5.0 mg/kg; s.c.) and the GluN2B-selective antagonist Ro 63-1908 (0, 0.1, 0.3, 1.0 mg/kg; s.c.). RESULTS: CGS 19755 (2.5 and 5.0 mg/kg) increased risky choice in males and females trained on the ascending schedule. Ro 63-1908 (1.0 mg/kg) decreased risky choice, but only in male rats trained on the ascending schedule. CONCLUSIONS: Although NMDA receptor antagonists differentially alter risky choice in the RDT, the current results show that NMDA receptors are an important mediator of decision-making involving probabilistic delivery of positive punishment.


Asunto(s)
Toma de Decisiones/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Riesgo , Animales , Dopamina/metabolismo , Femenino , Glutamatos/metabolismo , Masculino , Fenoles/farmacología , Piperidinas/farmacología , Probabilidad , Castigo/psicología , Ratas , Ratas Long-Evans
6.
Neuropsychopharmacology ; 45(10): 1766-1776, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32454511

RESUMEN

Chronic stress induces neuronal atrophy and synaptic loss in the medial prefrontal cortex (PFC), and this leads to behavioral and cognitive impairments. Our recent findings indicate that microglia contribute to structural remodeling of neurons via increased colony-stimulating factor (CSF)-1 in the medial PFC. Other work shows that chronic stress induces aberrant neuronal activity in the medial PFC, and that neuronal hyperactivity increases CSF1 signaling and alters microglia function. Thus, the present studies were designed to examine the role of neuronal activity in stress-induced CSF1 signaling and microglia-mediated neuronal remodeling in the medial PFC. Additional analyses probed stress effects on the dorsal hippocampus (HPC), basolateral amygdala (BLA), and somatosensory cortex (SSCTX). Mice were exposed to chronic unpredictable stress (CUS) or handled intermittently as controls, and received daily injection of vehicle or diazepam (1 mg/kg). As anticipated, diazepam attenuated CUS-induced behavioral despair and cognitive impairments. Further studies showed that diazepam normalized Csf1 and C3 mRNA in the PFC, and prevented increases in Csf1r and Cd11b in frontal cortex microglia following CUS. Stress had no effect on neuroimmune gene expression in the HPC. Confocal imaging in Thy1-GFP(M) mice demonstrated that diazepam limited microglial engulfment of neuronal elements and blocked CUS-induced dendritic spine loss in the medial PFC. Altogether, these findings indicate that modulation of chronic stress-induced neuronal activity limits microglia-mediated neuronal remodeling in the medial PFC, and subsequent behavioral and cognitive consequences.


Asunto(s)
Diazepam , Microglía , Animales , Diazepam/farmacología , Ratones , Plasticidad Neuronal , Corteza Prefrontal , Estrés Psicológico/tratamiento farmacológico
7.
Brain Behav Immun ; 81: 329-340, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31255679

RESUMEN

Synaptic deficits and neuronal dystrophy in the prefrontal cortex (PFC) are linked to behavioral and cognitive symptoms in depressed individuals. Preclinical studies indicate that chronic stress causes synaptic deficits on pyramidal neurons in the PFC that contribute to behavioral and cognitive impairments. Our recent work shows that chronic stress provokes microglia-mediated neuronal remodeling via neuronal colony stimulating factor (CSF)-1 signaling, leading to synaptic deficits and depressive-like behaviors. Other reports indicate that elevated corticosterone causes pyramidal neuron atrophy and microglia activation in the medial PFC, implicating glucocorticoid signaling in microglia-mediated neuronal remodeling following chronic stress. In this study, male mice were exposed to chronic unpredictable stress (CUS) and received daily administration of glucocorticoid receptor antagonist RU486 (25 mg/kg, i.p.). As expected, CUS exposure caused adrenal hypertrophy and elevated plasma corticosterone levels. Glucocorticoid receptor blockade prevented behavioral despair and cognitive impairments following CUS. Moreover, RU486 administration diminished CUS-induced CSF1 signaling in the PFC and reduced markers of phagocytosis on purified microglia. Confocal imaging in Thy1-GFP(M) mice showed that CUS increased microglia-mediated neuronal remodeling, and RU486 administration attenuated microglial engulfment of neuronal elements and prevented dendritic spine density deficits on pyramidal neurons following CUS. These results demonstrate that chronic stress-induced glucocorticoid signaling promotes CSF1 signaling and microglia-mediated neuronal remodeling in the medial PFC, which contributes to development of behavioral despair and cognitive impairments. This study presents primary evidence that neuroendocrine responses engage neuron-microglia interactions in the PFC; further implicating microglia in stress-induced neuronal remodeling, PFC dysfunction, and associated behavioral consequences.


Asunto(s)
Plasticidad Neuronal/fisiología , Receptores de Glucocorticoides/metabolismo , Estrés Psicológico/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Corticosterona/sangre , Depresión , Hipocampo/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Mifepristona/farmacología , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA