Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(8): e17827, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37533994

RESUMEN

Vegetable production plays a vital role in ensuring food security in Bangladesh. However, the majority of vegetable seedlings are currently transplanted manually, which is not only time-consuming but also labor-intensive and costly. In this context, a semi-automated transplanter can be considered as an alternative solution for mechanized seedling transplanting. To mechanize seedling operations, two types of transplanters were designed, fabricated and tested: the power tiller-operated semi-automatic dibbler vegetable seedling (DVS) transplanter and the furrow opener vegetable seedling (FVS) transplanter. The goal was to evaluate their performance and impact on field crop productivity. In the DVS transplanter design, the larger sprocket was adjusted to enhance the precision of hole-making by pressing the dibbler into the soil, creating holes where seedlings would be transplanted. On the other hand, the FVS transplanter utilized a furrow opener to create furrows, and the seedling is placed in these furrow at a specific distance from the furrow opener wall, where the distance between seedlings within the furrow could be adjusted based on the specific requirements of the seedling crop. The results of the evaluation indicated that both transplanters successfully planted seedlings without any missing placements, while hole covering was achieved at 115 and 118.2% for the DVS and FVS transplanters, respectively. The field capacity and field efficiency for both transplanters were determined to be 0.05 ha h-1 and 61.18%, respectively, with a coefficient of variation of 5% or less. Field tests conducted with brinjal crops at a forward speed of 1.2 km h-1 and a spacing of 0.7 × 0.6 m demonstrated that both designs yielded higher yield productivity compared to manual transplantation. Additionally, no issues related to vegetative development were observed. Both transplanters exhibited promising performance and significant potential in terms of accurately transplanting seedlings, and ensuring satisfactory transplantation quality. Furthermore, these transplanters offer several advantages, including less time-consuming, lower labor demands and even distribution of seedlings. This design encourages small to medium-level farmers seeking to engage in mechanized vegetable farming practices.

2.
Field Crops Res ; 291: 108791, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36742349

RESUMEN

Intensive rice (Oryza sativa)-based cropping systems in south Asia provide much of the calorie and protein requirements of low to middle-income rural and urban populations. Intensive tillage practices demand more resources, damage soil quality, and reduce crop yields and profit margins. Crop diversification along with conservation agriculture (CA)-based management practices may reduce external input use, improve resource-use efficiency, and increase the productivity and profitability of intensive cropping systems. A field study was conducted on loamy soil in a sub-tropical climate in northern Bangladesh to evaluate the effects of three tillage options and six rice-based cropping sequences on grain, calorie, and protein yields and gross margins (GM) for different crops and cropping sequences. The three tillage options were: (1) conservation agriculture (CA) with all crops in sequences untilled, (2) alternating tillage (AT) with the monsoon season rice crop tilled but winter season crops untilled, and (3) conventional tillage (CT) with all crops in sequences tilled. The six cropping sequences were: rice-rice (R-R), rice-mung bean (Vigna radiata) (R-MB), rice-wheat (Triticum aestivum) (R-W), rice-maize (Zea mays) (R-M), rice-wheat-mung bean (R-W-MB), and rice-maize-mung bean (R-M-MB). Over three years of experimentation, the average monsoon rice yield was 8% lower for CA than CT, but the average winter crops yield was 13% higher for CA than CT. Systems rice equivalent yield (SREY) and systems calorie and protein yields were about 5%, 3% and 6%, respectively, higher under CA than CT; additionally, AT added approximately 1% more to these benefits. The systems productivity gain under CA and AT resulted in higher GM by 16% while reducing the labor and total production cost under CA than CT. The R-M rotation had higher SREY, calorie, protein yields, and GM by 24%, 26%, 66%, and 148%, respectively, than the predominantly practiced R-R rotation. The R-W-MB rotation had the highest SREY (30%) and second highest (118%) GM. Considering the combined effect of tillage and cropping system, CA with R-M rotation showed superior performance in terms of SREY, protein yield, and GM. The distribution of labor use and GM across rotations was grouped into four categories: R-W in low-low (low labor use and low GM), R-M in low-high (low labor use and high GM), R-W-MB and R-M-MB in high-high (high labor use and high GM) and R-R and R-MB in high-low (high labor use and low GM). In conclusion, CA performed better than CT in different winter crops and cropping systems but not in monsoon rice. Our results demonstrate the multiple benefits of partial and full CA-based tillage practices employed with appropriate crop diversification to achieve sustainable food security with greater calorie and protein intake while maximizing farm profitability of intensive rice-based rotational systems.

3.
Dev Eng ; 6: 100061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35299974

RESUMEN

Two-wheel tractors (2WTs) are widely used by resource-poor farmers to prepare land in the Eastern Indo-Gangetic Plains (EIGP). This paper demonstrates that improved tillage blade design can enhance maize crop establishment under strip tillage, which falls under the rubric of conservation agriculture (CA). In order to achieve this aim, it is necessary to identify appropriate blade design and rotational speed for power tiller operated seeders, or PTOS, which can be attached to 2WTs and that are increasingly popular in the EIGP. We conducted experiments over two years in two locations in the EIGP within Bangladesh with loam and clay loam soils, respectively. Four blades designed with varying tip angles and five levels of rotational speed were compared with commercially available C-shaped blades sold with 2WTs. Torque and power requirements for strip tillage decreased with decreasing blade tip angle and rotational speed. The best combination of blade design and rotational speed was found with a 15° blade tip angle at 320 RPM. This combination resulted in higher furrow cross sectional area, more soil backfill with appropriately sized soil aggregates, and better seeding depth than C-shaped and 45° tip angle blades. These characteristics also facilitated improved crop establishment on both soil types. Our results indicate that strip-till maize establishment can be improved in Bangladesh by substituting commercially-available C-shaped blades with a 15° blade tip angle at appropriate 320 RPM, though machinery operators will require educational efforts to learn how to fine-tune RPM to improve crop establishment and achieve more sustainable crop establishment systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA