Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114245, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38761377

RESUMEN

Recurrent Clostridioides difficile infection (CDI) results in significant morbidity and mortality. We previously established that CDI in mice does not protect against reinfection and is associated with poor pathogen-specific B cell memory (Bmem), recapitulating our observations with human Bmem. Here, we demonstrate that the secreted toxin TcdB2 is responsible for subversion of Bmem responses. TcdB2 from an endemic C. difficile strain delayed immunoglobulin G (IgG) class switch following vaccination, attenuated IgG recall to a vaccine booster, and prevented germinal center formation. The mechanism of TcdB2 action included increased B cell CXCR4 expression and responsiveness to its ligand CXCL12, accounting for altered cell migration and a failure of germinal center-dependent Bmem. These results were reproduced in a C. difficile infection model, and a US Food and Drug Administration (FDA)-approved CXCR4-blocking drug rescued germinal center formation. We therefore provide mechanistic insights into C. difficile-associated pathogenesis and illuminate a target for clinical intervention to limit recurrent disease.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Clostridioides difficile , Centro Germinal , Receptores CXCR4 , Animales , Receptores CXCR4/metabolismo , Receptores CXCR4/inmunología , Centro Germinal/inmunología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/inmunología , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/metabolismo , Clostridioides difficile/inmunología , Clostridioides difficile/patogenicidad , Ratones , Ratones Endogámicos C57BL , Linfocitos B/inmunología , Linfocitos B/metabolismo , Quimiocina CXCL12/metabolismo , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/microbiología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Memoria Inmunológica , Femenino , Formación de Anticuerpos/inmunología
2.
Heliyon ; 10(7): e28420, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590903

RESUMEN

Organoids are 3-dimensional (3D) self-assembled structures capable of replicating the microanatomy and physiology of the epithelial components of their organ of origin. Adult stem cell (ASC) derived organoids from the liver have previously been shown to differentiate into primarily mature cholangiocytes, and their partial differentiation into functional hepatocytes can be promoted using specific media compositions. While full morphological differentiation of mature hepatocytes from ASCs has not yet been reported for any species, the functional differentiation can be approximated using various media compositions. Six differentiation media formulations from published studies on hepatic organoids were used for the differentiation protocol. Target species for these protocols were humans, mice, cats, and dogs, and encompassed various combinations and concentrations of four major hepatocyte media components: Bone morphogenetic protein 7 (BMP7), Fibroblast Growth Factor 19 (FGF19), Dexamethasone (Dex), and Gamma-Secretase Inhibitor IX (DAPT). Additionally, removing R-spondin from basic organoid media has previously been shown to drive the differentiation of ASC into mature hepatocytes. Differentiation media (N = 20) were designed to encompass combinations of the four major hepatocyte media components. The preferred differentiation of ASC-derived organoids from liver tissue into mature hepatocytes over cholangiocytes was confirmed by albumin production in the culture supernatant. Out of the twenty media compositions tested, six media resulted in the production of the highest amounts of albumin in the supernatant of the organoids. The cell lines cultured using these six media were further characterized via histological staining, transmission electron microscopy, RNA in situ hybridization, analysis of gene expression patterns, immunofluorescence, and label-free proteomics. The results indicate that preferential hepatocyte maturation from canine ADC-derived organoids from liver tissue is mainly driven by Dexamethasone and DAPT components. FGF19 did not enhance organoid differentiation but improved cell culture survival. Furthermore, we confirm that removing R-spondin from the media is crucial for establishing mature hepatic organoid cultures.

3.
Commun Biol ; 7(1): 218, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388772

RESUMEN

Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research.


Asunto(s)
Hígado , Organoides , Tortugas , Animales , Genoma , Hipoxia/genética , Proteómica , Tortugas/fisiología , Organoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA