Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 42(3): 397-409, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31179862

RESUMEN

People who drink groundwater in rural areas of Southeast Asia are exposed to pathogens and arsenic (As)-related health problems. A water treatment system consisting of electrocoagulation reactors, using iron (Fe) electrodes and a filtration tank, was designed to treat complex contaminated groundwater for drinking. Its applicability was demonstrated near the Red River in Vietnam. The water treatment system reduced 10.3 CFU/mL of total coliform and 376 µg/L of As(III) in the groundwater to 0 CFU/mL and 6.68 µg/L, respectively. Total coliforms were attenuated by Fe(II) infiltration or enmeshed during Fe precipitate formation. Of the total As, 43% formed As(III) complexation with the Fe precipitates and the other 57% was oxidized to As(V) then adsorbed to Fe precipitates. The Fe precipitates, containing total coliforms and As, were separated from the discharge water in the filtration tank. The system required 49 W of power to operate, which equates to 423 kWh/year, to continuously purify 0.5 t water/day. This requirement was powered by a 380-750 W solar panel, without external energy supply, making the water treatment system an appropriate option for addressing drinking water problems in rural areas.


Asunto(s)
Arsénico , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Arsénico/análisis , Electrocoagulación , Humanos , Vietnam , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA