Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 22(16): 7011-5, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16863253

RESUMEN

Gold nanoparticles functionalized with amphiphilic polybutadiene-poly(ethylene glycol) (PB-PEG) V-shaped arms formed stable Langmuir monolayers at the air-water and the air-solid interfaces. At these interfaces, the binary arms vertically segregated into a dense polymer corona, which surrounded the gold nanoparticles, preventing their large-scale agglomeration and keeping individual nanoparticles well-separated from each other and forming flattened, pancake nanostructures. The presence of both PEG and PB chains in the close proximity to the gold core was confirmed by surface enhanced Raman spectroscopy, whereas the AFM phase contrast images revealed the presence of 2 nm gold cores surrounded by the polymer shell with the diameter of 11 nm. We suggest that the amphiphilic shell drives their spontaneous organization into discrete 2D pancake-like hybrid structures that measured up to 10 microm in diameter and had a high packing density of gold clusters.

2.
Nano Lett ; 6(3): 435-40, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16522037

RESUMEN

We report a novel mechanism of assembly of dendronized rod molecules into a dense supramolecular fluorescencent web featuring self-propelled mechanistic inward motion of star-shaped aggregates within a solution droplet. We suggest that such a motion (observed in real time) is caused by the self-repulsion of the growing star-shaped nuclei from the liquid-solid-air interface in the course of one-dimensional growth of the anchored arms. An intriguing mechanism discovered here involves microscopic (hundred micrometers) directional motion of the microscopic aggregates driven by one-dimensional molecular assembly, which opens a new venue for guided assembly of dense mesoscopic supramolecular webs. Such assemblies can serve as interesting microfluidic networks, a web of optical switches, and model systems for studying intercellular communication.

3.
Langmuir ; 21(14): 6392-8, 2005 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-15982046

RESUMEN

Amphiphilic dendron-rod molecules with three hydrophilic poly(ethylene oxide) (PEO) branches attached to a hydrophobic octa-p-phenylene rod stem were investigated for their ability to form two-dimensional micellar structures on a solid surface. A treelike shape of the molecules was reported to be a major factor in the formation of nonplanar micellar structures in solution and in the bulk state (cylindrical and spherical). We observed that in these treelike amphiphilic molecules the hydrophilic terminated dendron branches assemble themselves in surface monolayers with the formation of two-dimensional layered or circular micellar structures. We suggested the formation of the planar ribbon-like structures with interdigitated layering within the loosely packed monolayers and circular, ringlike structures (2D circular aggregates) in the precollapsed state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA