Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Commun Med (Lond) ; 4(1): 15, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38316912

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) affects 10% of the global population costing over a hundred billion dollars per annum and leading to increased risk of cardiovascular disease. Many patients with CKD require regular haemodialyses. Synthetic arteriovenous grafts (AVG) are increasingly used to provide rapid vascular connection for dialysis. Initially, they have excellent patency rates but are critically limited by neointimal hyperplasia at the venous anastomosis, which drives subsequent thrombosis, graft failure and death. METHODS: Here, we describe a system in which electrical impedance spectroscopy sensors are incorporated circumferentially into the wall of a synthetic arteriovenous graft. This is combined with an implantable radiotelemetry system for data transmission outside the patient. The system was tested using monolayers of endothelial and smooth muscle cells as well as swine blood and clots with explanted human carotid artery plaques. Sensor testing was then performed in vitro and the device was implanted in vivo in female swine. RESULTS: The device can wirelessly report the accumulation of biological material, both cells and blood. Differences are also detected when comparing controls with pathological atheroma. In swine differences between blockage formation in a graft were remotely obtained and wireless reported. CONCLUSIONS: Combining electrical impedance spectroscopy and an implantable radiotelemetry system enables graft surveillance. This has the potential to be used for early detection of venous stenosis and blood clot formation in real-time in vivo. In principle, the concept could apply to other cardiovascular diseases and vascular implantable devices.


Chronic kidney disease is common throughout the world and required treatments are expensive. People with chronic kidney disease require frequent blood dialysis treatment to filter their blood and remove waste products and toxic substances circulating in the blood. For some patients, implantable tubular structures called AV grafts are used for providing access to dialysis. These grafts frequently block sometimes without warning leading to patients not being able to undergo dialysis. Through a series of laboratory experiments looking at cells that block the graft, fatty deposits and blood clots, we evaluated whether sensors could detect blockages in an AV graft. We also tested the device in an animal model. From these results we were able to show that our device could detect blockages within a graft. In the future we hope that introduction to the clinic of an optimized version of our device will reduce costs to healthcare systems and improve patient outcomes.

2.
Adv Sci (Weinh) ; 11(21): e2304748, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38342628

RESUMEN

Many cardiovascular problems stem from blockages that form within the vasculature and often treatment includes fitting a stent through percutaneous coronary intervention. This offers a minimally invasive therapy but re-occlusion through restenosis or thrombosis formation often occurs post-deployment. Research is ongoing into the creation of smart stents that can detect the occurrence of further problems. In this study, it is shown that selectively metalizing a non-conductive stent can create a set of electrodes that are capable of detecting a build-up of material around the stent. The associated increase in electrical impedance across the electrodes is measured, testing the stent with blood clot to mimic thrombosis. It is shown that the device is capable of sensing different amounts of occlusion. The stent can reproducibly sense the presence of clot showing a 16% +/-3% increase in impedance which is sufficient to reliably detect the clot when surrounded by explanted aorta (one sample t-test, p = 0.009, n = 9). It is demonstrated that this approach can be extended beyond the 3D printed prototypes by showing that it can be applied to a commercially available stent and it is believed that it can be further utilized by other types of medical implants.


Asunto(s)
Técnicas Biosensibles , Stents , Trombosis , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Trombosis/diagnóstico , Humanos , Animales , Impedancia Eléctrica
3.
Adv Sci (Weinh) ; 9(15): e2105285, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322587

RESUMEN

Self-reporting implantable medical devices are the future of cardiovascular healthcare. Cardiovascular complications such as blocked arteries that lead to the majority of heart attacks and strokes are frequently treated with inert metal stents that reopen affected vessels. Stents frequently re-block after deployment due to a wound response called in-stent restenosis (ISR). Herein, an implantable miniaturized sensor and telemetry system are developed that can detect this process, discern the different cell types associated with ISR, distinguish sub plaque components as demonstrated with ex vivo samples, and differentiate blood from blood clot, all on a silicon substrate making it suitable for integration onto a vascular stent. This work shows that microfabricated sensors can provide clinically relevant information in settings closer to physiological conditions than previous work with cultured cells.


Asunto(s)
Técnicas Biosensibles , Reestenosis Coronaria , Infarto del Miocardio , Placa Aterosclerótica , Reestenosis Coronaria/etiología , Reestenosis Coronaria/metabolismo , Reestenosis Coronaria/terapia , Humanos , Infarto del Miocardio/complicaciones , Placa Aterosclerótica/complicaciones , Stents/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA