Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Toxicol Chem ; 41(7): 1696-1710, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35404497

RESUMEN

Historical mining left a legacy of abandoned mines and waste rock in remote headwaters of major river systems in the western United States. Understanding the influence of these legacy mines on culturally and ecologically important downstream ecosystems is not always straightforward because of elevated natural levels of mineralization in mining-impacted watersheds. To test the ecological effects of historic mining in the headwaters of the upper Salmon River watershed in Idaho (USA), we measured multiple community and chemical endpoints in downstream linked aquatic-terrestrial food webs. Mining inputs impacted downstream food webs through increased mercury accumulation and decreased insect biodiversity. Total mercury (THg) in seston, aquatic insect larvae, adult aquatic insects, riparian spiders, and fish at sites up to 7.6 km downstream of mining was found at much higher concentrations (1.3-11.3-fold) and was isotopically distinct compared with sites immediately upstream of mining inputs. Methylmercury concentrations in bull trout and riparian spiders were sufficiently high (732-918 and 347-1140 ng MeHg g-1 dry wt, respectively) to affect humans, birds, and piscivorous fish. Furthermore, the alpha-diversity of benthic insects was locally depressed by 12%-20% within 4.3-5.7 km downstream from the mine. However, because total insect biomass was not affected by mine inputs, the mass of mercury in benthic insects at a site (i.e., ng Hg m-2 ) was extremely elevated downstream (10-1778-fold) compared with directly upstream of mining inputs. Downstream adult aquatic insect-mediated fluxes of THg were also high (~16 ng THg m-2 day-1 ). Abandoned mines can have ecologically important effects on downstream communities, including reduced biodiversity and increased mercury flux to higher order consumers, including fish, birds, and humans. Environ Toxicol Chem 2022;41:1696-1710. Published 2022. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Arañas , Contaminantes Químicos del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Cadena Alimentaria , Insectos , Mercurio/análisis , Trucha , Contaminantes Químicos del Agua/análisis
2.
Sci Total Environ ; 743: 140635, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32663689

RESUMEN

Wildfires burning in watersheds that have been mined and since revegetated pose unique risks to downstream water supplies. A wildfire near Boulder, Colorado, that burned a forested watershed recovering from mining disturbance that occurred 80-160 years ago allowed us to 1) assess arsenic and metal contamination in streams draining the burned area for a five-year period after the wildfire and 2) determine the fire-affected hydrologic drivers that convey arsenic and metals to surface water. Most metal concentrations were low in the circumneutral waters draining the burned area. Water and sediment collected from streams downstream of the burned area had elevated arsenic concentrations during and after post-fire storms. Mining-related deposits were the main source of arsenic to streams. An increased proportion of overland flow relative to infiltration after the fire mobilized arsenic- and metal-rich surface deposits, along with wildfire ash and soil, into streams within and downstream of the burned area. The deposition of this material into stream channels resulted in the remobilization of arsenic for the five-year post-fire study period. It is also possible that enhanced subsurface flow after the fire increased contact of water with arsenic-bearing minerals exposed in underground mine workings. Other studies have reported that wildfire ash can be an important source of arsenic and metals to surface waters, but wildfire ash was not a major source of arsenic in this study. Predicted increases in frequency, size, and intensity of wildfires in the western U.S., a region with widely dispersed historical mines, suggest that the intersection of legacy mining and post-wildfire hydrologic response poses an increasing risk for water supplies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA