Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 48(16): 9061-9, 2014 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-25062431

RESUMEN

High-volume hydraulic fracturing (HVHF) gas-drilling operations in the Marcellus Play have raised environmental concerns, including the risk of groundwater contamination. Fingerprinting water impacted by gas-drilling operations is not trivial given other potential sources of contamination. We present a multivariate statistical modeling framework for developing a quantitative, geochemical fingerprinting tool to distinguish sources of high salinity in shallow groundwater. The model was developed using new geochemical data for 204 wells in New York State (NYS), which has a HVHF moratorium and published data for additional wells in NYS and several salinity sources (Appalachian Basin brines, road salt, septic effluent, and animal waste). The model incorporates a stochastic simulation to predict the geochemistry of high salinity (>20 mg/L Cl) groundwater impacted by different salinity sources and then employs linear discriminant analysis to classify samples from different populations. Model results indicate Appalachian Basin brines are the primary source of salinity in 35% of sampled NYS groundwater wells with >20 mg/L Cl. The model provides an effective means for differentiating groundwater impacted by basin brines versus other contaminants. Using this framework, similar discriminatory tools can be derived for other regions from background water quality data.


Asunto(s)
Agua Subterránea/análisis , Modelos Teóricos , Salinidad , Análisis Discriminante , Monitoreo del Ambiente , Industria Procesadora y de Extracción , New York
2.
Science ; 320(5881): 1304-7, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18535236

RESUMEN

The surface uplift of mountain belts is generally assumed to reflect progressive shortening and crustal thickening, leading to their gradual rise. Recent studies of the Andes indicate that their elevation remained relatively stable for long periods (tens of millions of years), separated by rapid (1 to 4 million years) changes of 1.5 kilometers or more. Periodic punctuated surface uplift of mountain belts probably reflects the rapid removal of unstable, dense lower lithosphere after long-term thickening of the crust and lithospheric mantle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA