Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 36(10): 2058-67, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27562917

RESUMEN

OBJECTIVE: As they travel through the blood stream, plasma lipoproteins interact continuously with endothelial cells (ECs). Although the focus of research has mostly been guided by the importance of lipoproteins as risk factors for atherosclerosis, thrombosis, and other cardiovascular diseases, little is known about the mechanisms linking lipoproteins and angiogenesis under physiological conditions, and particularly, during embryonic development. In this work, we performed global mRNA expression profiling of endothelial cells from hypo-, and hyperlipidemic zebrafish embryos with the goal of uncovering novel mediators of lipoprotein signaling in the endothelium. APPROACH AND RESULTS: Microarray analysis was conducted on fluorescence-activated cell sorting-isolated fli1:EGFP(+) ECs from normal, hypo-, and hyperlipidemic zebrafish embryos. We found that opposed levels of apoprotein B lipoproteins result in differential expression of the secreted enzyme autotaxin in ECs, which in turn affects EC sprouting and angiogenesis. We further demonstrate that the effects of autotaxin in vivo are mediated by lysophosphatidic acid (LPA)-a well-known autotaxin activity product-and that LPA and LPA receptors participate as well in the response of ECs to lipoprotein levels. CONCLUSIONS: Our findings provide the first in vivo gene expression profiling of ECs facing different levels of plasma apoprotein B lipoproteins and uncover a novel lipoprotein-autotaxin-LPA axis as regulator of EC behavior. These results highlight new roles for lipoproteins as signaling molecules, which are independent of their canonical function as cholesterol transporters.


Asunto(s)
Apolipoproteínas B/metabolismo , Células Endoteliales/enzimología , Hiperlipidemias/enzimología , Lisofosfolípidos/metabolismo , Neovascularización Fisiológica , Hidrolasas Diéster Fosfóricas/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Apolipoproteínas B/sangre , Apolipoproteínas B/genética , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Genotipo , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Hiperlipidemias/sangre , Hiperlipidemias/genética , Lisofosfolípidos/sangre , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Hidrolasas Diéster Fosfóricas/sangre , Hidrolasas Diéster Fosfóricas/genética , Receptores del Ácido Lisofosfatídico/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/sangre , Proteínas de Pez Cebra/genética
2.
Development ; 142(24): 4266-78, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26525671

RESUMEN

Formation and remodeling of vascular beds are complex processes orchestrated by multiple signaling pathways. Although it is well accepted that vessels of a particular organ display specific features that enable them to fulfill distinct functions, the embryonic origins of tissue-specific vessels and the molecular mechanisms regulating their formation are poorly understood. The subintestinal plexus of the zebrafish embryo comprises vessels that vascularize the gut, liver and pancreas and, as such, represents an ideal model in which to investigate the early steps of organ-specific vessel formation. Here, we show that both arterial and venous components of the subintestinal plexus originate from a pool of specialized angioblasts residing in the floor of the posterior cardinal vein (PCV). Using live imaging of zebrafish embryos, in combination with photoconvertable transgenic reporters, we demonstrate that these angioblasts undergo two phases of migration and differentiation. Initially, a subintestinal vein forms and expands ventrally through a Bone Morphogenetic Protein-dependent step of collective migration. Concomitantly, a Vascular Endothelial Growth Factor-dependent shift in the directionality of migration, coupled to the upregulation of arterial markers, is observed, which culminates with the generation of the supraintestinal artery. Together, our results establish the zebrafish subintestinal plexus as an advantageous model for the study of organ-specific vessel development and provide new insights into the molecular mechanisms controlling its formation. More broadly, our findings suggest that PCV-specialized angioblasts contribute not only to the formation of the early trunk vasculature, but also to the establishment of late-forming, tissue-specific vascular beds.


Asunto(s)
Desarrollo Embrionario , Especificidad de Órganos , Venas/citología , Venas/embriología , Pez Cebra/embriología , Animales , Arterias/citología , Movimiento Celular , Sistema Digestivo/irrigación sanguínea , Células Endoteliales/citología , Hígado/irrigación sanguínea , Receptores Notch/metabolismo , Vasos Retinianos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA