Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 49(12): 3647-3665, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34155569

RESUMEN

Computational physiological models are promising tools to enhance the design of clinical trials and to assist in decision making. Organ-scale haemodynamic models are gaining popularity to evaluate perfusion in a virtual environment both in healthy and diseased patients. Recently, the principles of verification, validation, and uncertainty quantification of such physiological models have been laid down to ensure safe applications of engineering software in the medical device industry. The present study sets out to establish guidelines for the usage of a three-dimensional steady state porous cerebral perfusion model of the human brain following principles detailed in the verification and validation (V&V 40) standard of the American Society of Mechanical Engineers. The model relies on the finite element method and has been developed specifically to estimate how brain perfusion is altered in ischaemic stroke patients before, during, and after treatments. Simulations are compared with exact analytical solutions and a thorough sensitivity analysis is presented covering every numerical and physiological model parameter. The results suggest that such porous models can approximate blood pressure and perfusion distributions reliably even on a coarse grid with first order elements. On the other hand, higher order elements are essential to mitigate errors in volumetric blood flow rate estimation through cortical surface regions. Matching the volumetric flow rate corresponding to major cerebral arteries is identified as a validation milestone. It is found that inlet velocity boundary conditions are hard to obtain and that constant pressure inlet boundary conditions are feasible alternatives. A one-dimensional model is presented which can serve as a computationally inexpensive replacement of the three-dimensional brain model to ease parameter optimisation, sensitivity analyses and uncertainty quantification. The findings of the present study can be generalised to organ-scale porous perfusion models. The results increase the applicability of computational tools regarding treatment development for stroke and other cerebrovascular conditions.


Asunto(s)
Circulación Cerebrovascular , Análisis de Elementos Finitos , Modelos Biológicos , Humanos
2.
Philos Trans A Math Phys Eng Sci ; 379(2197): 20200072, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33775139

RESUMEN

Uncertainty quantification (UQ) is a key component when using computational models that involve uncertainties, e.g. in decision-making scenarios. In this work, we present uncertainty quantification patterns (UQPs) that are designed to support the analysis of uncertainty in coupled multi-scale and multi-domain applications. UQPs provide the basic building blocks to create tailored UQ for multiscale models. The UQPs are implemented as generic templates, which can then be customized and aggregated to create a dedicated UQ procedure for multiscale applications. We present the implementation of the UQPs with multiscale coupling toolkit Multiscale Coupling Library and Environment 3. Potential speed-up for UQPs has been derived as well. As a proof of concept, two examples of multiscale applications using UQPs are presented. This article is part of the theme issue 'Reliability and reproducibility in computational science: implementing verification, validation and uncertainty quantification in silico'.

3.
Interface Focus ; 11(1): 20190126, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33335707

RESUMEN

The influence of the flow environment on platelet aggregation is not fully understood in high-shear thrombosis. The objective of this study is to investigate the role of a high shear rate in initial platelet aggregation. The haemodynamic conditions in a microfluidic device are studied using cell-based blood flow simulations. The results are compared with in vitro platelet aggregation experiments performed with porcine whole blood (WB) and platelet-rich-plasma (PRP). We studied whether the cell-depleted layer in combination with high shear and high platelet flux can account for the distribution of platelet aggregates. High platelet fluxes at the wall were found in silico. In WB, the platelet flux was about twice as high as in PRP. Additionally, initial platelet aggregation and occlusion were observed in vitro in the stenotic region. In PRP, the position of the occlusive thrombus was located more downstream than in WB. Furthermore, the shear rates and stresses in cell-based and continuum simulations were studied. We found that a continuum simulation is a good approximation for PRP. For WB, it cannot predict the correct values near the wall.

4.
Interface Focus ; 11(1): 20190127, 2021 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-33343874

RESUMEN

The advancement of ischaemic stroke treatment relies on resource-intensive experiments and clinical trials. In order to improve ischaemic stroke treatments, such as thrombolysis and thrombectomy, we target the development of computational tools for in silico trials which can partially replace these animal and human experiments with fast simulations. This study proposes a model that will serve as part of a predictive unit within an in silico clinical trial estimating patient outcome as a function of treatment. In particular, the present work aims at the development and evaluation of an organ-scale microcirculation model of the human brain for perfusion prediction. The model relies on a three-compartment porous continuum approach. Firstly, a fast and robust method is established to compute the anisotropic permeability tensors representing arterioles and venules. Secondly, vessel encoded arterial spin labelling magnetic resonance imaging and clustering are employed to create an anatomically accurate mapping between the microcirculation and large arteries by identifying superficial perfusion territories. Thirdly, the parameter space of the problem is reduced by analysing the governing equations and experimental data. Fourthly, a parameter optimization is conducted. Finally, simulations are performed with the tuned model to obtain perfusion maps corresponding to an open and an occluded (ischaemic stroke) scenario. The perfusion map in the occluded vessel scenario shows promising qualitative agreement with computed tomography images of a patient with ischaemic stroke caused by large vessel occlusion. The results highlight that in the case of vessel occlusion (i) identifying perfusion territories is essential to capture the location and extent of underperfused regions and (ii) anisotropic permeability tensors are required to give quantitatively realistic estimation of perfusion change. In the future, the model will be thoroughly validated against experiments.

5.
Biomech Model Mechanobiol ; 19(2): 681-692, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31624966

RESUMEN

Endothelial cells (ECs) play a major role in the healing process following angioplasty to inhibit excessive neointima. This makes the process of EC healing after injury, in particular EC migration in a stented vessel, important for recovery of normal vessel function. In that context, we present a novel particle-based model of EC migration and validate it against in vitro experimental data. We have developed a particle-based model of EC migration under flow conditions in an in vitro vessel with obstacles. Cell movement in the model is a combination of random walks and directed movement along the local flow velocity vector. For model calibration, a set of experimental data for cell migration in a similarly shaped channel has been used. We have calibrated the model for a baseline case of a channel with no obstacles and then applied it to the case of a channel with ridges on the bottom surface, representative of stent strut geometry. We were able to closely reproduce the cell migration speed and angular distribution of their movement relative to the flow direction reported in vitro. The model also reproduces qualitative aspects of EC migration, such as entrapment of cells downstream from the flow-disturbing ridge. The model has the potential, after more extensive in vitro validation, to study the effect of variation in strut spacing and shape, through modification of the local flow, on EC migration. The results of this study support the hypothesis that EC migration is strongly affected by the direction and magnitude of local wall shear stress.


Asunto(s)
Movimiento Celular , Células Endoteliales/citología , Modelos Biológicos , Reología , Calibración , Comunicación Celular , Simulación por Computador , Inhibidores de Proteínas Quinasas/farmacología , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
6.
J R Soc Interface ; 16(159): 20190148, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31575344

RESUMEN

Computer simulations were performed to study the transport of red blood cells and platelets in high shear flows, mimicking earlier published in vitro experiments in microfluidic devices with high affinity for platelet aggregate formation. The goal is to understand and predict where thrombus formation starts. Additionally, the need of cell-based modelling in these microfluidic devices is demonstrated by comparing our results with macroscopic models, wherein blood is modelled as a continuous fluid. Hemocell, a cell-based blood flow simulation framework is used to investigate the transport physics in the microfluidic devices. The simulations show an enlarged cell-depleted layer at the site where a platelet aggregate forms in the experiments. In this enlarged cell-depleted layer, the probability to find a platelet is higher than in the rest of the microfluidic device. In addition, the shear rates are sufficiently high to allow for the von Willebrand factor to elongate in this region. We hypothesize that the enlarged cell-depleted layer combined with a sufficiently large platelet flux and sufficiently high shear rates result in an haemodynamic environment that is a preferred location for initial platelet aggregation.


Asunto(s)
Plaquetas/metabolismo , Simulación por Computador , Modelos Cardiovasculares , Agregación Plaquetaria , Trombosis/metabolismo , Velocidad del Flujo Sanguíneo , Humanos , Dispositivos Laboratorio en un Chip
7.
Cardiovasc Eng Technol ; 10(4): 568-582, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31531821

RESUMEN

BACKGROUND: Coronary artery restenosis is an important side effect of percutaneous coronary intervention. Computational models can be used to better understand this process. We report on an approach for validation of an in silico 3D model of in-stent restenosis in porcine coronary arteries and illustrate this approach by comparing the modelling results to in vivo data for 14 and 28 days post-stenting. METHODS: This multiscale model includes single-scale models for stent deployment, blood flow and tissue growth in the stented vessel, including smooth muscle cell (SMC) proliferation and extracellular matrix (ECM) production. The validation procedure uses data from porcine in vivo experiments, by simulating stent deployment using stent geometry obtained from micro computed tomography (micro-CT) of the stented vessel and directly comparing the simulation results of neointimal growth to histological sections taken at the same locations. RESULTS: Metrics for comparison are per-strut neointimal thickness and per-section neointimal area. The neointimal area predicted by the model demonstrates a good agreement with the detailed experimental data. For 14 days post-stenting the relative neointimal area, averaged over all vessel sections considered, was 20 ± 3% in vivo and 22 ± 4% in silico. For 28 days, the area was 42 ± 3% in vivo and 41 ± 3% in silico. CONCLUSIONS: The approach presented here provides a very detailed, location-specific, validation methodology for in silico restenosis models. The model was able to closely match both histology datasets with a single set of parameters. Good agreement was obtained for both the overall amount of neointima produced and the local distribution. It should be noted that including vessel curvature and ECM production in the model was paramount to obtain a good agreement with the experimental data.


Asunto(s)
Angioplastia Coronaria con Balón/instrumentación , Simulación por Computador , Reestenosis Coronaria/diagnóstico por imagen , Vasos Coronarios/diagnóstico por imagen , Imagenología Tridimensional , Modelos Cardiovasculares , Stents , Microtomografía por Rayos X , Angioplastia Coronaria con Balón/efectos adversos , Animales , Reestenosis Coronaria/etiología , Reestenosis Coronaria/patología , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Matriz Extracelular/patología , Miocitos del Músculo Liso/patología , Neointima , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Sus scrofa , Factores de Tiempo
8.
Philos Trans A Math Phys Eng Sci ; 377(2142): 20180154, 2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30967038

RESUMEN

We explore the efficiency of a semi-intrusive uncertainty quantification (UQ) method for multiscale models as proposed by us in an earlier publication. We applied the multiscale metamodelling UQ method to a two-dimensional multiscale model for the wound healing response in a coronary artery after stenting (in-stent restenosis). The results obtained by the semi-intrusive method show a good match to those obtained by a black-box quasi-Monte Carlo method. Moreover, we significantly reduce the computational cost of the UQ. We conclude that the semi-intrusive metamodelling method is reliable and efficient, and can be applied to such complex models as the in-stent restenosis ISR2D model. This article is part of the theme issue 'Multiscale modelling, simulation and computing: from the desktop to the exascale'.

9.
J R Soc Interface ; 15(146)2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30257923

RESUMEN

We study the effect of pulsatile flow on the transport of red blood cells (RBCs) and platelets into aneurysm geometries with varying dome-to-neck aspect ratios (AR). We use a validated two-dimensional lattice Boltzmann model for blood plasma with a discrete element method for both RBCs and platelets coupled by the immersed boundary method. Flow velocities and vessel diameters were matched with measurements of cerebral perforating arteries and flow was driven by a synthetic heartbeat curve typical for such vessel sizes. We observe a flow regime change as the aspect ratio increases from a momentum-driven regime in the small aspect ratio to a shear-driven regime in the larger aspect ratios. In the small aspect ratio case, we see the development of a re-circulation zone that exhibits a layering of high (greater than or equal to 7 s) and low (less than 7 s) residence cells. In the shear-driven regime, we see high and low residence cells well mixed, with an increasing population of cells that are trapped inside the aneurysm as the aspect ratio increases. In all cases, we observe aneurysms that are platelet-rich and red blood cell-poor when compared with their respective parental vessel populations. Pulsatility also plays a role in the small aspect ratio as we observe a smaller population of older trapped cells along the aneurysm wall in the pulsatile case when compared with a steady flow case. Pulsatility does not have a significant effect in shear-driven regime aspect ratios.


Asunto(s)
Hemodinámica , Aneurisma Intracraneal/fisiopatología , Flujo Pulsátil , Adulto , Aneurisma Roto/fisiopatología , Velocidad del Flujo Sanguíneo , Plaquetas/citología , Simulación por Computador , Eritrocitos/citología , Hematócrito , Humanos , Masculino , Modelos Cardiovasculares , Reología , Resistencia al Corte , Viscosidad
10.
J R Soc Interface ; 14(132)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28679664

RESUMEN

A three-dimensional cell-based mechanical model of coronary artery tunica media is proposed. The model is composed of spherical cells forming a hexagonal close-packed lattice. Tissue anisotropy is taken into account by varying interaction forces with the direction of intercellular connection. Several cell-centre interaction potentials for repulsion and attraction are considered, including the Hertz contact model and its neo-Hookean extension, the Johnson-Kendall-Roberts model of adhesive contact, and a wormlike chain model. The model is validated against data from in vitro uni-axial tension tests performed on dissected strips of tunica media. The wormlike chain potential in combination with the neo-Hookean Hertz contact model produces stress-stretch curves which represent the experimental data very well.


Asunto(s)
Comunicación Celular/fisiología , Movimiento Celular/fisiología , Modelos Biológicos , Túnica Media/citología , Túnica Media/fisiología , Animales , Fenómenos Biomecánicos , Simulación por Computador
11.
Phys Rev E ; 96(1-1): 013302, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29347057

RESUMEN

The immersed-boundary lattice-Boltzmann method (IB-LBM) is increasingly being used in simulations of dense suspensions. These systems are computationally very expensive and can strongly benefit from lower resolutions that still maintain the desired accuracy for the quantities of interest. IB-LBM has a number of free parameters that have to be defined, often without exact knowledge of the tradeoffs, since their behavior in low resolutions is not well understood. Such parameters are the lattice constant Δx, the number of vertices N_{v}, the interpolation kernel ϕ, and the LBM relaxation time τ. We investigate the effect of these IB-LBM parameters on a number of straightforward but challenging benchmarks. The systems considered are (a) the flow of a single sphere in shear flow, (b) the collision of two spheres in shear flow, and (c) the lubrication interaction of two spheres. All benchmarks are performed in three dimensions. The first two systems are used for determining two effective radii: the hydrodynamic radius r_{hyd} and the particle interaction radius r_{inter}. The last system is used to establish the numerical robustness of the lubrication forces, used to probe the hydrodynamic interactions in the limit of small gaps. Our results show that lower spatial resolutions result in larger hydrodynamic and interaction radii, while surface densities should be chosen above two vertices per LU^{2} result to prevent fluid penetration in underresolved meshes. Underresolved meshes also failed to produce the migration of particles toward the center of the domain due to lift forces in Couette flow, mostly noticeable for IBM-kernel ϕ_{2}. Kernel ϕ_{4}, despite being more robust toward mesh resolution, produces a notable membrane thickness, leading to the breakdown of the lubrication forces in larger gaps, and its use in dense suspensions where the mean particle distances are small can result in undesired behavior. r_{hyd} is measured to be different from r_{inter}, suggesting that there is no consistent measure to recalibrate the radius of the suspended particle.

12.
Philos Trans A Math Phys Eng Sci ; 372(2021)2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-24982249

RESUMEN

We review a methodology to design, implement and execute multi-scale and multi-science numerical simulations. We identify important ingredients of multi-scale modelling and give a precise definition of them. Our framework assumes that a multi-scale model can be formulated in terms of a collection of coupled single-scale submodels. With concepts such as the scale separation map, the generic submodel execution loop (SEL) and the coupling templates, one can define a multi-scale modelling language which is a bridge between the application design and the computer implementation. Our approach has been successfully applied to an increasing number of applications from different fields of science and technology.

13.
Philos Trans A Math Phys Eng Sci ; 372(2021)2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-24982258

RESUMEN

Multiscale simulations model phenomena across natural scales using monolithic or component-based code, running on local or distributed resources. In this work, we investigate the performance of distributed multiscale computing of component-based models, guided by six multiscale applications with different characteristics and from several disciplines. Three modes of distributed multiscale computing are identified: supplementing local dependencies with large-scale resources, load distribution over multiple resources, and load balancing of small- and large-scale resources. We find that the first mode has the apparent benefit of increasing simulation speed, and the second mode can increase simulation speed if local resources are limited. Depending on resource reservation and model coupling topology, the third mode may result in a reduction of resource consumption.


Asunto(s)
Algoritmos , Modelos Biológicos , Diseño de Software , Programas Informáticos , Simulación por Computador , Integración de Sistemas
14.
Interface Focus ; 3(2): 20120087, 2013 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-24427530

RESUMEN

Multiscale simulations are essential in the biomedical domain to accurately model human physiology. We present a modular approach for designing, constructing and executing multiscale simulations on a wide range of resources, from laptops to petascale supercomputers, including combinations of these. Our work features two multiscale applications, in-stent restenosis and cerebrovascular bloodflow, which combine multiple existing single-scale applications to create a multiscale simulation. These applications can be efficiently coupled, deployed and executed on computers up to the largest (peta) scale, incurring a coupling overhead of 1-10% of the total execution time.

15.
Interface Focus ; 3(2): 20120089, 2013 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-24427532

RESUMEN

Despite the importance of platelets in the formation of a thrombus, their transport in complex flows has not yet been studied in detail. In this paper we simulated red blood cells and platelets to explore their transport behaviour in aneurysmal geometries. We considered two aneurysms with different aspect ratios (AR = 1.0, 2.0) in the presence of fast and slow blood flows (Re = 10, 100), and examined the distributions of the cells. Low velocities in the parent vessel resulted in a large stagnation zone inside the cavity, leaving the initial distribution almost unchanged. In fast flows, an influx of platelets into the aneurysm was observed, leading to an elevated concentration. The connection of the platelet-rich cell-free layer (CFL) with the outer regions of the recirculation zones leads to their increased platelet concentration. These platelet-enhanced recirculation zones produced a diverse distribution of cells inside the aneurysm, for the different aspect ratios. A thin red blood CFL that was occupied by platelets was observed on the top of the wide-necked aneurysm, whereas a high-haematocrit region very close to the vessel wall was present in the narrow-necked case. The simulations revealed that non-trivial distributions of red blood cells and platelets are possible inside aneurysmal geometries, giving rise to several hypotheses on the formation of a thrombus, as well as to the wall weakening and the possible rupture of an aneurysm.

16.
J Thromb Haemost ; 8(12): 2596-607, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20880256

RESUMEN

Microparticles and exosomes are cell-derived microvesicles present in body fluids that play a role in coagulation, inflammation, cellular homeostasis and survival, intercellular communication, and transport. Despite increasing scientific and clinical interest, no standard procedures are available for the isolation, detection and characterization of microparticles and exosomes, because their size is below the reach of conventional detection methods. Our objective is to give an overview of currently available and potentially applicable methods for optical and non-optical determination of the size, concentration, morphology, biochemical composition and cellular origin of microparticles and exosomes. The working principle of all methods is briefly discussed, as well as their applications and limitations based on the underlying physical parameters of the technique. For most methods, the expected size distribution for a given microvesicle population is determined. The explanations of the physical background and the outcomes of our calculations provide insights into the capabilities of each method and make a comparison possible between the discussed methods. In conclusion, several (combinations of) methods can detect clinically relevant properties of microparticles and exosomes. These methods should be further explored and validated by comparing measurement results so that accurate, reliable and fast solutions come within reach.


Asunto(s)
Exosomas , Microesferas , Óptica y Fotónica , Citometría de Flujo , Colorantes Fluorescentes , Humanos , Luz , Masculino , Microscopía Electrónica de Transmisión , Estándares de Referencia , Dispersión de Radiación , Espectrometría de Fluorescencia
17.
Opt Express ; 18(13): 14173-82, 2010 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-20588551

RESUMEN

We describe a method to obtain the fraction of poorly deformable red blood cells in a blood sample from the intensity pattern in an ektacytometer. In an ektacytometer red blood cells are transformed into ellipsoids by a shear flow between two transparent cylinders. The intensity pattern, due to a laser beam that is sent through the suspension, is projected on a screen. When measuring a healthy red blood cell population iso-intensity curves are ellipses with an axial ratio equal to that of the average red blood cell. In contrast poorly deformable cells result in circular iso-intensity curves. In this study we show that for mixtures of deformable and poorly deformable red blood cells, iso-intensity curves in the composite intensity pattern are neither elliptical nor circular but obtain cross-like shapes. We propose a method to obtain the fraction of poorly deformable red blood cells from those intensity patterns. Experiments with mixtures of poorly deformable and deformable red blood cells validate the method and demonstrate its accuracy. In a clinical setting our approach is potentially of great value for the detection of the fraction of sickle cells in blood samples of patients with sickle cell disease or to find a measure for the parasitemia in patients infected with malaria.


Asunto(s)
Anemia de Células Falciformes/patología , Técnicas Biosensibles/instrumentación , Deformación Eritrocítica , Eritrocitos/patología , Modelos Biológicos , Eritrocitos/fisiología , Humanos , Malaria/patología , Dispersión de Radiación , Estrés Mecánico
18.
J Biomech ; 39(5): 873-84, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16488226

RESUMEN

The complex nature of blood flow in the human arterial system is still gaining more attention, as it has become clear that cardiovascular diseases localize in regions of complex geometry and complex flow fields. In this article, we demonstrate that the lattice Boltzmann method can serve as a mesoscopic computational hemodynamic solver. We argue that it may have benefits over the traditional Navier-Stokes techniques. The accuracy of the method is tested by studying time-dependent systolic flow in a 3D straight rigid tube at typical hemodynamic Reynolds and Womersley numbers as an unsteady flow benchmark. Simulation results of steady and unsteady flow in a model of the human aortic bifurcation reconstructed from magnetic resonance angiography, are presented as a typical hemodynamic application.


Asunto(s)
Aorta Abdominal/fisiología , Velocidad del Flujo Sanguíneo/fisiología , Modelos Cardiovasculares , Sístole/fisiología , Simulación por Computador , Humanos
19.
Phys Rev Lett ; 88(23): 234501, 2002 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-12059367

RESUMEN

The role of stagnant zones in hydrodynamic dispersion is studied for creeping flow through a fixed bed of spherical permeable particles, covering several orders of characteristic time and length scales associated with fluid transport. Numerical simulations employ a hierarchical model to cope with the different temporal and spatial scales, showing good agreement with our experimental results on diffusion-limited mass transfer, transient, and asymptotic longitudinal dispersion. These data demonstrate that intraparticle liquid holdup in macroscopically homogeneous porous media clearly dominates over contributions caused by the intrinsic flow field heterogeneity and boundary-layer mass transfer.

20.
J Opt Soc Am A Opt Image Sci Vis ; 18(8): 1944-53, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11488498

RESUMEN

The theory of the discrete-dipole approximation (DDA) for light scattering is extended to allow for the calculation of radiation forces on each dipole in the DDA model. Starting with the theory of Draine and Weingartner [Astrophys. J. 470, 551 (1996)] we derive an expression for the radiation force on each dipole. These expressions are reformulated into discrete convolutions, allowing for an efficient, O(N logN) evaluation of the forces. The total radiation pressure on the particle is obtained by summation of the individual forces. The theory is tested on spherical particles. The resulting accumulated radiation forces are compared with Mie theory. The accuracy is within the order of a few percent, i.e., comparable with that obtained for extinction cross sections calculated with the DDA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA