Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 42(15): 10037-49, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25106868

RESUMEN

Low-density lipoprotein receptor (LDLR) mRNA is unstable, but is stabilized upon extracellular signal-regulated kinase (ERK) activation, possibly through the binding of certain proteins to the LDLR mRNA 3'-untranslated region (UTR), although the detailed mechanism underlying this stability control is unclear. Here, using a proteomic approach, we show that proteins ZFP36L1 and ZFP36L2 specifically bind to the 3'-UTR of LDLR mRNA and recruit the CCR4-NOT-deadenylase complex, resulting in mRNA destabilization. We also show that the C-terminal regions of ZFP36L1 and ZFP36L2 are directly phosphorylated by p90 ribosomal S6 kinase, a kinase downstream of ERK, resulting in dissociation of the CCR4-NOT-deadenylase complex and stabilization of LDLR mRNA. We further demonstrate that targeted disruption of the interaction between LDLR mRNA and ZFP36L1 and ZFP36L2 using antisense oligonucleotides results in upregulation of LDLR mRNA and protein. These results indicate that ZFP36L1 and ZFP36L2 regulate LDLR protein levels downstream of ERK. Our results also show the usefulness of our method for identifying critical regulators of specific RNAs and the potency of antisense oligonucleotide-based therapeutics.


Asunto(s)
Factor 1 de Respuesta al Butirato/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Receptores de LDL/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Factores de Transcripción/metabolismo , Regiones no Traducidas 3' , Línea Celular , Células HEK293 , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas , Fosforilación , Receptores de LDL/metabolismo
2.
Anal Chem ; 86(5): 2549-58, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24512465

RESUMEN

Nanoflow liquid chromatography (nano-LC) is an essential technique for highly sensitive analysis of complex biological samples, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is advantageous for rapid identification of proteins and in-depth analysis of post-translational modifications (PTMs). A combination of nano-LC and MALDI-MS (nano-LC/MALDI-MS) is useful for highly sensitive and detailed analysis in life sciences. However, the existing system does not fully utilize the advantages of each technique, especially in the interface of eluate transfer from nano-LC to a MALDI plate. To effectively combine nano-LC with MALDI-MS, we integrated a nano-LC column and a deposition probe for the first time (column probe) and incorporated it into a nano-LC/MALDI-MS system. Spotting nanoliter eluate droplets directly from the column onto the MALDI plate prevents postcolumn diffusion and preserves the chromatographic resolution. A DHB prespotted plate was prepared to suit the fabricated column probe to concentrate the droplets of nano-LC eluate. The performance of the advanced nano-LC/MALDI-MS system was substantiated by analyzing protein digests. When the system was coupled with multidimensional liquid chromatography (MDLC), trace amounts of glycopeptides that spiked into complex samples were successfully detected. Thus, a nano-LC/MALDI-MS direct-spotting system that eliminates postcolumn diffusion was constructed, and the efficacy of the system was demonstrated through highly sensitive analysis of the protein digests or spiked glycopeptides.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Sondas Moleculares
3.
Anal Chem ; 86(4): 1937-42, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24498852

RESUMEN

Glycosylation and phosphorylation are important post-translational modifications in biological processes and biomarker research. The difficulty in analyzing these modifications is mainly their low abundance and dissociation of labile regions such as sialic acids or phosphate groups. One solution in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is to improve matrices for glycopeptides, carbohydrates, and phosphopeptides by increasing the sensitivity and suppressing dissociation of the labile regions. Recently, a liquid matrix 3-aminoquinoline (3-AQ)/α-cyano-4-hydroxycinnamic acid (CHCA) (3-AQ/CHCA), introduced by Kolli et al. in 1996, has been reported to increase sensitivity for carbohydrates or phosphopeptides, but it has not been systematically evaluated for glycopeptides. In addition, 3-AQ/CHCA enhances the dissociation of labile regions. In contrast, a liquid matrix 1,1,3,3-tetramethylguanidium (TMG, G) salt of p-coumaric acid (CA) (G3CA) was reported to suppress dissociation of sulfate groups or sialic acids of carbohydrates. Here we introduce a liquid matrix 3-AQ/CA for glycopeptides, carbohydrates, and phosphopeptides. All of the analytes were detected as [M + H](+) or [M - H](-) with higher or comparable sensitivity using 3-AQ/CA compared with 3-AQ/CHCA or 2,5-dihydroxybenzoic acid (2,5-DHB). The sensitivity was increased 1- to 1000-fold using 3-AQ/CA. The dissociation of labile regions such as sialic acids or phosphate groups and the fragmentation of neutral carbohydrates were suppressed more using 3-AQ/CA than using 3-AQ/CHCA or 2,5-DHB. 3-AQ/CA was thus determined to be an effective MALDI matrix for high sensitivity and the suppression of dissociation of labile regions in glycosylation and phosphorylation analyses.


Asunto(s)
Carbohidratos/análisis , Ácidos Cumáricos/química , Glicopéptidos/análisis , Fosfopéptidos/análisis , Quinolonas/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Secuencia de Aminoácidos , Animales , Carbohidratos/genética , Bovinos , Glicopéptidos/genética , Humanos , Datos de Secuencia Molecular , Propionatos
4.
J Mass Spectrom ; 48(11): 1217-23, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24259210

RESUMEN

We describe here an optimization study of the sample preparation conditions for sensitive detection of peptides by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Among many factors in the conditions, we varied the percent acetonitrile in the peptide solution, the percent acetonitrile in the matrix solution and the α-cyano-4-hydroxycinnamic acid (CHCA) concentration in the matrix solution. CHCA was chosen because it is the most frequently used matrix for analyzing peptides. The well-established dried-droplet method was employed for sample deposition. The examined range of the concentration of CHCA was from 0.01 to 10 mg/ml, and the MeCN content of the solvent for matrix/analyte was 10% to 50%. The indicator for the detection sensitivity was the S/N ratio of the peaks of peptides used. Highly increased sensitivity (100- to 1000-fold) was observed for the optimal CHCA concentration of 0.1 mg/ml in 20% MeCN/0.1% aq. trifluoroacetic acid (TFA), as compared with the conventional concentration (10 mg/ml) in 50% MeCN/0.1% aq. TFA. For example, the limit of detection of human ACTH 18-39 was 10 amol/well for the optimal condition but 10 fmol/well for the conventional condition. The optimal condition (0.1 mg/ml CHCA in 20% MeCN/0.1% aq. TFA) was verified with five model peptides and provided significant improvement in sensitivity (by two to three orders of magnitude) compared with the conventional conditions. Optimizing the CHCA concentration and solvent composition significantly improved the detection sensitivity in the analysis of peptides by MALDI-MS.


Asunto(s)
Péptidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Acetonitrilos/química , Animales , Bovinos , Ácidos Cumáricos/química , Límite de Detección , Péptidos/química , Reproducibilidad de los Resultados , Albúmina Sérica Bovina/química
5.
Nature ; 437(7063): 1381-5, 2005 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-16251969

RESUMEN

The 26S proteasome is a multisubunit protease responsible for regulated proteolysis in eukaryotic cells. It comprises one catalytic 20S proteasome and two axially positioned 19S regulatory complexes. The 20S proteasome is composed of 28 subunits arranged in a cylindrical particle as four heteroheptameric rings, alpha1-7beta1-7beta1-7alpha1-7 (refs 4, 5), but the mechanism responsible for the assembly of such a complex structure remains elusive. Here we report two chaperones, designated proteasome assembling chaperone-1 (PAC1) and PAC2, that are involved in the maturation of mammalian 20S proteasomes. PAC1 and PAC2 associate as heterodimers with proteasome precursors and are degraded after formation of the 20S proteasome is completed. Overexpression of PAC1 or PAC2 accelerates the formation of precursor proteasomes, whereas knockdown by short interfering RNA impairs it, resulting in poor maturation of 20S proteasomes. Furthermore, the PAC complex provides a scaffold for alpha-ring formation and keeps the alpha-rings competent for the subsequent formation of half-proteasomes. Thus, our results identify a mechanism for the correct assembly of 20S proteasomes.


Asunto(s)
Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Dimerización , Células HeLa , Humanos , Modelos Biológicos , Chaperonas Moleculares/genética , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/biosíntesis , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Conejos
6.
DNA Repair (Amst) ; 4(5): 537-45, 2005 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-15811626

RESUMEN

Xeroderma pigmentosum (XP) is a genetic disease characterized by hypersensitivity to UV irradiation and high incidence of skin cancer caused by inherited defects in DNA repair. Mutational malfunction of damaged-DNA binding protein 2 (DDB2) causes the XP complementation group E (XP-E). DDB2 together with DDB1 comprises a heterodimer called DDB complex, which is involved in damaged-DNA binding and nucleotide excision repair. Interestingly, by screening for a cellular protein(s) that interacts with Cullin 4A (Cul4A), a key component of the ubiquitin ligase complex, we identified DDB1. Immunoprecipitation confirmed that Cul4A interacts with DDB1 and also associates with DDB2. To date, it has been reported that DDB2 is rapidly degraded after UV irradiation and that overproduction of Cul4A stimulates the ubiquitylation of DDB2 in the cells. However, as biochemical analysis using pure Cul4A-containing E3 is missing, it is still unknown whether the Cul4A complex directly ubiquitylates DDB2 or not. We thus purified the Cul4A-containing E3 complex to near homogeneity and attempted to ubiquitylate DDB2 in vitro. The ubiquitylation of DDB2 was reconstituted using this pure E3 complex, indicating that DDB-Cul4A E3 complex in itself can ubiquitylate DDB2 directly. We also showed that an amino acid substitution, K244E, in DDB2 derived from a XP-E patient did not affect its ubiquitylation.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Xerodermia Pigmentosa/genética , Sustitución de Aminoácidos , Animales , Células CHO , Cricetinae , Proteínas Cullin/genética , Reparación del ADN , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Inmunoprecipitación , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Rayos Ultravioleta , Xerodermia Pigmentosa/metabolismo
7.
Eur J Biochem ; 271(13): 2624-35, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15206928

RESUMEN

The structure of the tryptophan synthase beta2 subunit (Pfbeta2) from the hyperthermophile, Pyrococcus furiosus, was determined by X-ray crystallographic analysis at 2.2 A resolution, and its stability was examined by DSC. This is the first report of the X-ray structure of the tryptophan synthase beta2 subunit alone, although the structure of the tryptophan synthase alpha2beta2 complex from Salmonella typhimurium has already been reported. The structure of Pfbeta2 was essentially similar to that of the beta2 subunit (Stbeta2) in the alpha2beta2 complex from S. typhimurium. The sequence alignment with secondary structures of Pfbeta and Stbeta in monomeric form showed that six residues in the N-terminal region and three residues in the C-terminal region were deleted in Pfbeta, and one residue at Pro366 of Stbeta and at Ile63 of Pfbeta was inserted. The denaturation temperature of Pfbeta2 was higher by 35 degrees C than the reported values from mesophiles at approximately pH 8. On the basis of structural information on both proteins, the analyses of the contributions of each stabilization factor indicate that: (a) the higher stability of Pfbeta2 is not caused by either a hydrophobic interaction or an increase in ion pairs; (b) the number of hydrogen bonds involved in the main chains of Pfbeta is greater by about 10% than that of Stbeta, indicating that the secondary structures of Pfbeta are more stabilized than those of Stbeta and (c) the sequence of Pfbeta seems to be better fitted to an ideally stable structure than that of Stbeta, as assessed from X-ray structure data.


Asunto(s)
Pyrococcus furiosus/enzimología , Triptófano Sintasa/química , Secuencia de Aminoácidos , Rastreo Diferencial de Calorimetría , Cristalografía por Rayos X , Estabilidad de Enzimas , Datos de Secuencia Molecular , Conformación Proteica , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA