Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 951: 175180, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39117220

RESUMEN

The aim was to determine whether indirect exposure to pesticides, specifically a copper-based fungicide, induces alterations in oxidative stress and subclinical and early kidney biomarkers in male farmers tasked with olives harvesting. Furthermore, we tested whether sex influences the susceptibility to pesticide-induced renal damage by comparing the results of this study with those obtained previously. The study focused on olive farmers (n = 41) indirectly exposed to copper-based fungicides in Estepa (Sevilla, Spain), comparing them with a control group (n = 32). Blood samples were analyzed for metal concentrations (Cu, Mn, Se, and Zn), lipid peroxidation (MDA), protein oxidation (carbonyl groups), and antioxidant enzyme activities (SOD and CAT) while urine samples were assessed for biomarkers of early kidney damage (NGAL, KIM-1, transferrin, IGFBP7, TIMP-2). Although no significant, a tendency to increase lipid and protein oxidation was observed, together with the activity of antioxidant enzymes SOD and CAT, and a decrease in total antioxidants. Moreover, an increase in urinary NGAL and IGFBP7 among pesticide-exposed farmers suggests potential underdiagnosis of kidney damage. Farmers exhibit a subtle tendency to oxidative stress compared to control, while metal levels are significantly lower in farmers, suggesting potential compensatory responses. Furthermore, biomarkers for early kidney damage are elevated, emphasizing their vulnerability in both sexes. These findings highlight the need for investigations of renal health in pesticide-exposed farmers for preventative measures and regular health monitoring.


Asunto(s)
Biomarcadores , Agricultores , Exposición Profesional , Estrés Oxidativo , Plaguicidas , Humanos , España , Exposición Profesional/efectos adversos , Masculino , Plaguicidas/toxicidad , Biomarcadores/sangre , Persona de Mediana Edad , Adulto , Riñón/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Femenino
2.
Free Radic Biol Med ; 207: 308-319, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597786

RESUMEN

Pregnancy requires a high demand of energy, which leads to an increase of oxidative stress. The aim of this study was to assess the oxidative status in 200 couples of pregnant women-newborns at the time of delivery, for the first time, who gave birth in two University Hospitals from the province of Seville. Recruited women filled an epidemiological questionnaire with their demographic characteristics and dietary habits during pregnancy. At the time of delivery, both maternal and cord blood samples were collected. Protein oxidation, superoxide dismutase, and catalase levels were measured to assess the oxidative status of these women, together with the levels of vitamins D, B12, Zn, Se, and Cu. Our results showed a tendency for all biomarkers measured to be higher in cord blood than in maternal blood. For the correlations established between the OS markers and sociodemographic characteristics, only significant differences for carbonyl groups values were found on both maternal and cord blood, relating these higher values to the use of insecticides in the women's homes. For newborns, only a significant correlation was detected between antioxidant enzymes and the newborn's weight, specifically for superoxide dismutase activity. Additionally, the higher values obtained in cord blood might suggest metabolization, while a higher production of ROS and antioxidant enzymes might be required to maintain the balance. Measured levels for Se were similar in both maternal and cord blood, unlike Cu and Zn, where higher levels were found for maternal blood than cord blood, indicating a correlation between maternal Se values and SOD as OS biomarker. Furthermore, vitamin D levels were around the optimum values established, finding a relationship between vitamin D and new-born's height, unlike for vitamin B12 values, where a correlation with maternal food consumption characteristics was established. Overall values were inside normal ranges and consistent for our population.


Asunto(s)
Antioxidantes , Superóxido Dismutasa , Recién Nacido , Embarazo , Humanos , Femenino , España , Estudios Prospectivos , Vitamina D , Relaciones Madre-Hijo
3.
Toxins (Basel) ; 15(5)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37235355

RESUMEN

The incidence and interest of cyanobacteria are increasing nowadays because they are able to produce some toxic secondary metabolites known as cyanotoxins. Among them, the presence of cylindrospermopsin (CYN) is especially relevant, as it seems to cause damage at different levels in the organisms: the nervous system being the one most recently reported. Usually, the effects of the cyanotoxins are studied, but not those exerted by cyanobacterial biomass. The aim of the present study was to assess the cytotoxicity and oxidative stress generation of one cyanobacterial extract of R. raciborskii non-containing CYN (CYN-), and compare its effects with those exerted by a cyanobacterial extract of C. ovalisporum containing CYN (CYN+) in the human neuroblastoma SH-SY5Y cell line. Moreover, the analytical characterization of potential cyanotoxins and their metabolites that are present in both extracts of these cultures was also carried out using Ultrahigh Performance Liquid Chromatography-Mass Spectrometry, in tandem (UHPLC-MS/MS). The results show a reduction of cell viability concentration- and time-dependently after 24 and 48 h of exposure with CYN+ being five times more toxic than CYN-. Furthermore, the reactive oxygen species (ROS) increased with time (0-24 h) and CYN concentration (0-1.11 µg/mL). However, this rise was only obtained after the highest concentrations and times of exposure to CYN-, while this extract also caused a decrease in reduced glutathione (GSH) levels, which might be an indication of the compensation of the oxidative stress response. This study is the first one performed in vitro comparing the effects of CYN+ and CYN-, which highlights the importance of studying toxic features in their natural scenario.


Asunto(s)
Toxinas Bacterianas , Cianobacterias , Neuroblastoma , Humanos , Toxinas Bacterianas/metabolismo , Espectrometría de Masas en Tándem , Toxinas de Cianobacterias , Estrés Oxidativo , Cianobacterias/metabolismo , Línea Celular , Uracilo/toxicidad , Uracilo/metabolismo
4.
Toxicon ; 227: 107091, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36965714

RESUMEN

Due to climate change and anthropogenic activities, the levels of pollution of aquatic and terrestrial environments have increased in the last decades. In this sense, the rise of cyanobacterial blooms, which release secondary metabolites with toxic properties, and the global use of pesticides for agricultural purposes have a negative impact on ecosystems. Thus, it would be interesting to study the concomitance of both types of toxicants in the same sample, since it is possible that they appear together. The aim of the present work was to state the effects of the interaction between the cyanotoxin cylindrospermopsin and the pesticide chlorpyrifos in differentiated SH-SY5Y neuronal cells to assess how they could affect the nervous system. To this end, cytotoxicity, morphological, and acetylcholinesterase activity studies were performed during 24 and 48 h. The results revealed a concentration-dependent decrease in viability and interaction between both toxicants, together with clear signs of apoptosis and necrosis induction. In this sense, different stages on the differentiation process would lead to differences in the toxicity exerted by the compounds both isolated as in combination, which it is not observed in non-differentiated cells. Additionally, the acetylcholinesterase activity appeared not to be affected, which is a clear difference compared to non-differentiated cells. These results show the importance of studying not only the toxicants themselves, but also in combination, to assess their possible effects in a more realistic scenario.


Asunto(s)
Cloropirifos , Neuroblastoma , Humanos , Cloropirifos/toxicidad , Acetilcolinesterasa , Ecosistema , Línea Celular Tumoral , Diferenciación Celular
5.
Toxins (Basel) ; 14(3)2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35324672

RESUMEN

Cylindrospermopsin (CYN) is a cyanotoxin whose incidence has been increasing in the last decades. Due to its capacity to exert damage at different levels of the organism, it is considered a cytotoxin. Although the main target organ is the liver, recent studies indicate that CYN has potential toxic effects on the nervous system, both in vitro and in vivo. Thus, the aim of the present work was to study the effects of this cyanotoxin on neuronal viability and synaptic integrity in murine primary cultures of neurons exposed to environmentally relevant concentrations (0-1 µg/mL CYN) for 12, 24, and 48 h. The results demonstrate a concentration- and time-dependent decrease in cell viability; no cytotoxicity was detected after exposure to the cyanotoxin for 12 h, while all of the concentrations assayed decreased this parameter after 48 h. Furthermore, CYN was also demonstrated to exert damage at the synaptic level in a murine primary neuronal culture in a concentration- and time-dependent manner. These data highlight the importance of studying the neurotoxic properties of this cyanotoxin in different experimental models.


Asunto(s)
Toxinas Bacterianas , Uracilo , Alcaloides , Animales , Toxinas Bacterianas/toxicidad , Emparejamiento Cromosómico , Toxinas de Cianobacterias , Ratones , Neuronas , Uracilo/toxicidad
6.
Arch Toxicol ; 95(12): 3695-3716, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34628512

RESUMEN

Several neonicotinoids have recently been shown to activate the nicotinic acetylcholine receptor (nAChR) on human neurons. Moreover, imidacloprid (IMI) and other members of this pesticide family form a set of diverse metabolites within crops. Among these, desnitro-imidacloprid (DN-IMI) is of special toxicological interest, as there is evidence (i) for human dietary exposure to this metabolite, (ii) and that DN-IMI is a strong trigger of mammalian nicotinic responses. We set out here to quantify responses of human nAChRs to DN-IMI and an alternative metabolite, IMI-olefin. To evaluate toxicological hazards, these data were then compared to those of IMI and nicotine. Ca2+-imaging experiments on human neurons showed that DN-IMI exhibits an agonistic effect on nAChRs at sub-micromolar concentrations (equipotent with nicotine) while IMI-olefin activated the receptors less potently (in a similar range as IMI). Direct experimental data on the interaction with defined receptor subtypes were obtained by heterologous expression of various human nAChR subtypes in Xenopus laevis oocytes and measurement of the transmembrane currents evoked by exposure to putative ligands. DN-IMI acted on the physiologically important human nAChR subtypes α7, α3ß4, and α4ß2 (high-sensitivity variant) with similar potency as nicotine. IMI and IMI-olefin were confirmed as nAChR agonists, although with 2-3 orders of magnitude lower potency. Molecular docking studies, using receptor models for the α7 and α4ß2 nAChR subtypes supported an activity of DN-IMI similar to that of nicotine. In summary, these data suggest that DN-IMI functionally affects human neurons similar to the well-established neurotoxicant nicotine by triggering α7 and several non-α7 nAChRs.


Asunto(s)
Imidazolinas/farmacología , Neonicotinoides/farmacología , Agonistas Nicotínicos/farmacología , Nitrocompuestos/farmacología , Piridinas/farmacología , Receptores Nicotínicos/efectos de los fármacos , Alquenos/química , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Simulación del Acoplamiento Molecular , Neonicotinoides/metabolismo , Neuroblastoma/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nitrocompuestos/metabolismo , Oocitos , Plaguicidas/metabolismo , Plaguicidas/farmacología , Receptores Nicotínicos/metabolismo , Transducción de Señal/efectos de los fármacos , Xenopus laevis
7.
Arch Toxicol ; 95(6): 2081-2107, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33778899

RESUMEN

Neonicotinoid pesticides, originally developed to target the insect nervous system, have been reported to interact with human receptors and to activate rodent neurons. Therefore, we evaluated in how far these compounds may trigger signaling in human neurons, and thus, affect the human adult or developing nervous system. We used SH-SY5Y neuroblastoma cells as established model of nicotinic acetylcholine receptor (nAChR) signaling. In parallel, we profiled dopaminergic neurons, generated from LUHMES neuronal precursor cells, as novel system to study nAChR activation in human post-mitotic neurons. Changes of the free intracellular Ca2+ concentration ([Ca2+]i) were used as readout, and key findings were confirmed by patch clamp recordings. Nicotine triggered typical neuronal signaling responses that were blocked by antagonists, such as tubocurarine and mecamylamine. Pharmacological approaches suggested a functional expression of α7 and non-α7 nAChRs on LUHMES cells. In this novel test system, the neonicotinoids acetamiprid, imidacloprid, clothianidin and thiacloprid, but not thiamethoxam and dinotefuran, triggered [Ca2+]i signaling at 10-100 µM. Strong synergy of the active neonicotinoids (at low micromolar concentrations) with the α7 nAChR-positive allosteric modulator PNU-120596 was observed in LUHMES and SH-SY5Y cells, and specific antagonists fully inhibited such signaling. To provide a third line of evidence for neonicotinoid signaling via nAChR, we studied cross-desensitization: pretreatment of LUHMES and SH-SY5Y cells with active neonicotinoids (at 1-10 µM) blunted the signaling response of nicotine. The pesticides (at 3-30 µM) also blunted the response to the non-α7 agonist ABT 594 in LUHMES cells. These data show that human neuronal cells are functionally affected by low micromolar concentrations of several neonicotinoids. An effect of such signals on nervous system development is a toxicological concern.


Asunto(s)
Neuronas Dopaminérgicas/efectos de los fármacos , Neonicotinoides/toxicidad , Plaguicidas/toxicidad , Receptores Nicotínicos/efectos de los fármacos , Calcio/metabolismo , Línea Celular , Línea Celular Tumoral , Neuronas Dopaminérgicas/patología , Relación Dosis-Respuesta a Droga , Humanos , Neonicotinoides/administración & dosificación , Neuroblastoma/metabolismo , Técnicas de Placa-Clamp , Receptores Nicotínicos/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA