Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 21(5): 1304-1316, 2017 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-29091768

RESUMEN

Central nervous system (CNS) chemical protection depends upon discrete control of small-molecule access by the blood-brain barrier (BBB). Curiously, some drugs cause CNS side-effects despite negligible transit past the BBB. To investigate this phenomenon, we asked whether the highly BBB-enriched drug efflux transporter MDR1 has dual functions in controlling drug and endogenous molecule CNS homeostasis. If this is true, then brain-impermeable drugs could induce behavioral changes by affecting brain levels of endogenous molecules. Using computational, genetic, and pharmacologic approaches across diverse organisms, we demonstrate that BBB-localized efflux transporters are critical for regulating brain levels of endogenous steroids and steroid-regulated behaviors (sleep in Drosophila and anxiety in mice). Furthermore, we show that MDR1-interacting drugs are associated with anxiety-related behaviors in humans. We propose a general mechanism for common behavioral side effects of prescription drugs: pharmacologically challenging BBB efflux transporters disrupts brain levels of endogenous substrates and implicates the BBB in behavioral regulation.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Sistema Nervioso Central/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Xenobióticos/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/química , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Aldosterona/química , Aldosterona/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Sitios de Unión , Evolución Biológica , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ciclosporina/farmacología , Bases de Datos de Compuestos Químicos , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisterona/química , Ecdisterona/metabolismo , Hormonas Esteroides Gonadales/análisis , Masculino , Simulación del Acoplamiento Molecular , Ratas , Especificidad por Sustrato , Xenobióticos/química
2.
Mol Biol Cell ; 28(26): 3728-3740, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29046397

RESUMEN

Intracellular accumulation of lipids and swollen dysfunctional lysosomes are linked to several neurodegenerative diseases, including lysosomal storage disorders (LSD). Detailed characterization of lipid metabolic changes in relation to the onset and progression of neurodegeneration is currently missing. We systematically analyzed lipid perturbations in spinster (spin) mutants, a Drosophila model of LSD-like neurodegeneration. Our results highlight an imbalance in brain ceramide and sphingosine in the early stages of neurodegeneration, preceding the accumulation of endomembranous structures, manifestation of altered behavior, and buildup of lipofuscin. Manipulating levels of ceramidase and altering these lipids in spin mutants allowed us to conclude that ceramide homeostasis is the driving force in disease progression and is integral to spin function in the adult nervous system. We identified 29 novel physical interaction partners of Spin and focused on the lipid carrier protein, Lipophorin (Lpp). A subset of Lpp and Spin colocalize in the brain and within organs specialized for lipid metabolism (fat bodies and oenocytes). Reduced Lpp protein was observed in spin mutant tissues. Finally, increased levels of lipid metabolites produced by oenocytes in spin mutants allude to a functional interaction between Spin and Lpp, underscoring the systemic nature of lipid perturbation in LSD.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Metabolismo de los Lípidos/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Animales , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Drosophila/metabolismo , Lípidos/genética , Lípidos/fisiología , Lipoproteínas/metabolismo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Lisosomas/metabolismo , Mutación , Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Fenotipo
3.
Neurobiol Dis ; 98: 77-87, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27913291

RESUMEN

Saposin deficiency is a childhood neurodegenerative lysosomal storage disorder (LSD) that can cause premature death within three months of life. Saposins are activator proteins that promote the function of lysosomal hydrolases that mediate the degradation of sphingolipids. There are four saposin proteins in humans, which are encoded by the prosaposin gene. Mutations causing an absence or impaired function of individual saposins or the whole prosaposin gene lead to distinct LSDs due to the storage of different classes of sphingolipids. The pathological events leading to neuronal dysfunction induced by lysosomal storage of sphingolipids are as yet poorly defined. We have generated and characterised a Drosophila model of saposin deficiency that shows striking similarities to the human diseases. Drosophila saposin-related (dSap-r) mutants show a reduced longevity, progressive neurodegeneration, lysosomal storage, dramatic swelling of neuronal soma, perturbations in sphingolipid catabolism, and sensory physiological deterioration. Our data suggests a genetic interaction with a calcium exchanger (Calx) pointing to a possible calcium homeostasis deficit in dSap-r mutants. Together these findings support the use of dSap-r mutants in advancing our understanding of the cellular pathology implicated in saposin deficiency and related LSDs.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Saposinas/deficiencia , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Animales Modificados Genéticamente , Antiportadores/genética , Antiportadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Calcio/metabolismo , Ceramidas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Homeostasis/fisiología , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Enfermedades Neurodegenerativas/patología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Saposinas/genética , Esfingosina/metabolismo , Análisis de Supervivencia
4.
Front Neurosci ; 8: 346, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25426014

RESUMEN

Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with fluorescence activated cell sorting (FACS) and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ATP-binding cassette (ABC) and solute carrier (SLC) transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

5.
Front Neurosci ; 8: 414, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25565944

RESUMEN

The invertebrate blood-brain barrier (BBB) field is growing at a rapid pace and, in recent years, studies have shown a physiologic and molecular complexity that has begun to rival its vertebrate counterpart. Novel mechanisms of paracellular barrier maintenance through G-protein coupled receptor signaling were the first demonstrations of the complex adaptive mechanisms of barrier physiology. Building upon this work, the integrity of the invertebrate BBB has recently been shown to require coordinated function of all layers of the compound barrier structure, analogous to signaling between the layers of the vertebrate neurovascular unit. These findings strengthen the notion that many BBB mechanisms are conserved between vertebrates and invertebrates, and suggest that novel findings in invertebrate model organisms will have a significant impact on the understanding of vertebrate BBB functions. In this vein, important roles in coordinating localized and systemic signaling to dictate organism development and growth are beginning to show how the BBB can govern whole animal physiologies. This includes novel functions of BBB gap junctions in orchestrating synchronized neuroblast proliferation, and of BBB secreted antagonists of insulin receptor signaling. These advancements and others are pushing the field forward in exciting new directions. In this review, we provide a synopsis of invertebrate BBB anatomy and physiology, with a focus on insights from the past 5 years, and highlight important areas for future study.

6.
Autophagy ; 9(6): 936-8, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23529190

RESUMEN

Flies expressing the most common Parkinson disease (PD)-related mutation, LRRK2-G2019S, in their dopaminergic neurons show loss of visual function and degeneration of the retina, including mitochondrial abnormalities, apoptosis and autophagy. Since the photoreceptors that degenerate are not dopaminergic, this demonstrates nonautonomous degeneration, and a spread of pathology. This provides a model consistent with Braak's hypothesis on progressive PD. The loss of visual function is specific for the G2019S mutation, implying the cause is its increased kinase activity, and is enhanced by increased neuronal activity. These data suggest novel explanations for the variability in animal models of PD. The specificity of visual loss to G2019S, coupled with the differences in neural firing rate, provide an explanation for the variability between people with PD in visual tests.


Asunto(s)
Neuronas Dopaminérgicas/patología , Mutación/genética , Degeneración Nerviosa/patología , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/genética , Adenosina Trifosfato/metabolismo , Animales , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/enzimología , Drosophila melanogaster/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Degeneración Nerviosa/enzimología , Degeneración Retiniana/enzimología , Degeneración Retiniana/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA