Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908687

RESUMEN

This study explores how the metafounder (MF) concept enhances genetic evaluations in dairy cattle populations using single-step genomic best linear unbiased prediction (ssGBLUP). By improving the consideration of relationships among founder populations, MF ensures accurate alignment of pedigree and genomic relationships. The research aims to propose a method for grouping MF based on genotypic information, assess different approaches for estimating the gamma matrix, and compare unknown parent groups (UPG) and MF methodologies across various scenarios, including those with low and high pedigree completeness based on a simulated dairy cattle population. In the scenario where unknown ancestors are rare, the impact of UPG or MF on breeding values is minimal but MF still performs slightly better compared with UPG. The scenario with lower genotyping rates and more unknown parents shows significant differences in evaluations with and without UPG and also compared with MF. The study shows that ssGBLUP evaluations where UPG are considered via Quaas-Pollak-transformation in the pedigree-based and genomic relationship matrix (UPG_fullQP) results in double counting and subsequently in a pronounced bias and overdispersion. Another focus is on the estimation of the gamma matrix, emphasizing the importance of crossbred genotypes for accuracy. Challenges emerge in classifying animals into subpopulations and further into MF or UPG, but the method used in this study, which is based on genotypes, results in predictions which are comparable to those obtained using the true subpopulations for the assignment. Estimated validation results using the linear regression method confirm the superior performance of MF evaluations, although differences compared with true validations are smaller. Notably, UPG_fullQP's extreme bias is less evident in routine validation statistics.

2.
J Dairy Sci ; 106(12): 9026-9043, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37641303

RESUMEN

The validation of estimated breeding values from single-step genomic BLUP (ssGBLUP) is an important topic, as more and more countries and animal populations are currently changing their genomic prediction to single-step. The objective of this work was to compare different methods to validate single-step genomic breeding values (GEBV). The investigations were carried out using a simulation study based on the German-Austrian-Czech Fleckvieh population. To test the validation methods under different conditions, several biased and unbiased scenarios were simulated. The application of the widely used Interbull GEBV test to the single-step method is only possible to a limited extent, partly because of genomic preselection, which biases conventional estimated breeding values. Alternative validation methods considered in the study are the linear regression method proposed by Legarra and Reverter, the improved genomic validation including additional regressions as suggested by VanRaden and an adaptation of the Interbull GEBV test using daughter yield deviations (DYD) from ssGBLUP instead of pedigree BLUP. The comparison of the different methods for the different scenarios showed that for males the methods based on GEBV estimate the dispersion more accurate and less biased compared with the GEBV test using DYD from ssGBLUP, whereas the standard Interbull GEBV test is highly affected by genomic preselection for males. For females, the GEBV test using yield deviations from ssGBLUP results in better estimations for the true dispersion.


Asunto(s)
Genoma , Genómica , Femenino , Masculino , Bovinos/genética , Animales , Genotipo , Genómica/métodos , Análisis de Regresión , Modelos Lineales , Linaje , Modelos Genéticos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA