Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 17(10): 2704-2710, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33586756

RESUMEN

Adhesive interactions between elastic structures such as graphene sheets, carbon nanotubes, and microtubules have been shown to exhibit hysteresis due to irrecoverable energy loss associated with bond breakage, even in static (rate-independent) experiments. To understand this phenomenon, we start with a minimal theory for the peeling of a thin sheet from a substrate, coupling the local event of bond breaking to the nonlocal elastic relaxation of the sheet and show that this can drive static adhesion hysteresis over a bonding/debonding cycle. Using this model we quantify hysteresis in terms of the adhesion and elasticity parameters of the system. This allows us to derive a scaling relation that preserves hysteresis at different levels of granularity while resolving a seeming paradox of lattice trapping in the continuum limit of a discrete fracture process. Finally, to verify our theory, we use new experiments to demonstrate and measure adhesion hysteresis in bundled microtubules.

2.
Elife ; 72018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29856317

RESUMEN

We use optical trapping to continuously bend an isolated microtubule while simultaneously measuring the applied force and the resulting filament strain, thus allowing us to determine its elastic properties over a wide range of applied strains. We find that, while in the low-strain regime, microtubules may be quantitatively described in terms of the classical Euler-Bernoulli elastic filament, above a critical strain they deviate from this simple elastic model, showing a softening response with increasingdeformations. A three-dimensional thin-shell model, in which the increased mechanical compliance is caused by flattening and eventual buckling of the filament cross-section, captures this softening effect in the high strain regime and yields quantitative values of the effective mechanical properties of microtubules. Our results demonstrate that properties of microtubules are highly dependent on the magnitude of the applied strain and offer a new interpretation for the large variety in microtubule mechanical data measured by different methods.


Asunto(s)
Microtúbulos/metabolismo , Animales , Fenómenos Biomecánicos , Bovinos , Simulación por Computador , Flagelos/metabolismo , Modelos Biológicos , Pinzas Ópticas
3.
Bioessays ; 38(5): 474-81, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26996935

RESUMEN

The cytoskeleton is a network of interconnected protein filaments, which provide a three-dimensional scaffold for cells. Remodeling of the cytoskeleton is important for key cellular processes, such as cell motility, division, or morphogenesis. This remodeling is traditionally considered to be driven exclusively by processes consuming chemical energy, such as the dynamics of the filaments or the action of molecular motors. Here, we review two mechanisms of cytoskeletal network remodeling that are independent of the consumption of chemical energy. In both cases directed motion of overlapping filaments is driven by entropic forces, which arise from harnessing thermal energy present in solution. Entropic forces are induced either by macromolecular crowding agents or by diffusible crosslinkers confined to the regions where filaments overlap. Both mechanisms increase filament overlap length and lead to the contraction of filament networks. These force-generating mechanisms, together with the chemical energy-dependent mechanisms, need to be considered for the comprehensive quantitative picture of the remodeling of cytoskeletal networks in cells.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Motoras Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fenómenos Biomecánicos , División Celular , Movimiento Celular , Citoesqueleto/ultraestructura , Entropía , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Humanos , Microtúbulos/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura
4.
Phys Rev Lett ; 114(13): 138102, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25884139

RESUMEN

In the presence of nonadsorbing polymers, colloidal particles experience ubiquitous attractive interactions induced by depletion forces. Here, we measure the depletion interaction between a pair of microtubule filaments using a method that combines single filament imaging with optical trapping. By quantifying the dependence of filament cohesion on both polymer concentration and solution ionic strength, we demonstrate that the minimal model of depletion, based on the Asakura-Oosawa theory, fails to quantitatively describe the experimental data. By measuring the cohesion strength in two- and three- filament bundles, we verify pairwise additivity of depletion interactions for the specific experimental conditions. The described experimental technique can be used to measure pairwise interactions between various biological or synthetic filaments and complements information extracted from bulk osmotic stress experiments.


Asunto(s)
Citoesqueleto/química , Citoesqueleto/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Modelos Biológicos , Dextranos/química , Entropía , Polietilenglicoles/química
5.
Nat Mater ; 14(6): 583-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25730393

RESUMEN

Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.


Asunto(s)
Fricción , Elasticidad , Modelos Teóricos , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA