Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioengineering (Basel) ; 11(2)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38391598

RESUMEN

This study evaluated the use of silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) 3D-printed scaffolds, with channel sizes of either 200 (SC-200) or 500 (SC-500) µm, as biomaterials to support the chondrogenesis of sheep bone marrow stem cells (oBMSC), under in vitro conditions. The objective was to validate the potential use of SiO2/PTHF/PCL-diCOOH for prospective in vivo ovine studies. The behaviour of oBMSC, with and without the use of exogenous growth factors, on SiO2/PTHF/PCL-diCOOH scaffolds was investigated by analysing cell attachment, viability, proliferation, morphology, expression of chondrogenic genes (RT-qPCR), deposition of aggrecan, collagen II, and collagen I (immunohistochemistry), and quantification of sulphated glycosaminoglycans (GAGs). The results showed that all the scaffolds supported cell attachment and proliferation with upregulation of chondrogenic markers and the deposition of a cartilage extracellular matrix (collagen II and aggrecan). Notably, SC-200 showed superior performance in terms of cartilage gene expression. These findings demonstrated that SiO2/PTHF/PCL-diCOOH with 200 µm pore size are optimal for promoting chondrogenic differentiation of oBMSC, even without the use of growth factors.

2.
Biomater Biosyst ; 13: 100087, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38312434

RESUMEN

Biomaterials that can improve the healing of articular cartilage lesions are needed. To address this unmet need, we developed novel 3D printed silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) hybrid scaffolds. Our aim was to carry out essential studies to advance this medical device towards functional validation in pre-clinical trials. First, we show that the chemical composition, microarchitecture and mechanical properties of these scaffolds were not affected by sterilisation with gamma irradiation. To evaluate the systemic and local immunogenic reactivity of the sterilised 3D printed hybrid scaffolds, they were implanted subcutaneously into Balb/c mice. The scaffolds did not trigger a systemic inflammatory response over one week of implantation. The interaction between the host immune system and the implanted scaffold elicited a local physiological reaction with infiltration of mononuclear cells without any signs of a chronic inflammatory response. Then, we investigated how these 3D printed hybrid scaffolds direct chondrogenesis in vitro. Human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs) seeded within the 3D printed hybrid scaffolds were cultured under normoxic or hypoxic conditions, with or without chondrogenic supplements. Chondrogenic differentiation assessed by both gene expression and protein production analyses showed that 3D printed hybrid scaffolds support hBM-MSC chondrogenesis. Articular cartilage-specific extracellular matrix deposition within these scaffolds was enhanced under hypoxic conditions (1.7 or 3.7 fold increase in the median of aggrecan production in basal or chondrogenic differentiation media). Our findings show that 3D printed SiO2/PTHF/PCL-diCOOH hybrid scaffolds have the potential to support the regeneration of cartilage tissue.

3.
Front Bioeng Biotechnol ; 11: 1224596, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37671192

RESUMEN

Introduction: Hybrids consist of inorganic and organic co-networks that are indistinguishable above the nanoscale, which can lead to unprecedented combinations of properties, such as high toughness and controlled degradation. Methods: We present 3D printed bioactive hybrid scaffolds for bone regeneration, produced by incorporating calcium into our "Bouncy Bioglass", using calcium methoxyethoxide (CME) as the calcium precursor. SiO2-CaOCME/PTHF/PCL-diCOOH hybrid "inks" for additive manufacturing (Direct Ink Writing) were optimised for synergy of mechanical properties and open interconnected pore channels. Results and Discussion: Adding calcium improved printability. Changing calcium content (5, 10, 20, 30, and 40 mol.%) of the SiO2-CaOCME/PTHF/PCL-diCOOH hybrids affected printability and mechanical properties of the lattice-like scaffolds. Hybrids containing 30 mol.% calcium in the inorganic network (70S30CCME-CL) printed with 500 µm channels and 100 µm strut size achieved the highest strength (0.90 ± 0.23 MPa) and modulus of toughness (0.22 ± 0.04 MPa). These values were higher than Ca-free SiO2/PTHF/PCL-diCOOH hybrids (0.36 ± 0.14 MPa strength and 0.06 ± 0.01 MPa toughness modulus). Over a period of 90 days of immersion in simulated body fluid (SBF), the 70S30CCME-CL hybrids also kept a stable strain to failure (~30 %) and formed hydroxycarbonate apatite within three days. The extracts released by the 70S30CCME-CL hybrids in growth medium did not cause cytotoxic effects on human bone marrow stromal cells over 24 h of culture.

4.
Materials (Basel) ; 13(17)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899192

RESUMEN

Regenerative medicine solutions require thoughtful design to elicit the intended biological response. This includes the biomechanical stimulus to generate an appropriate strain in the scaffold and surrounding tissue to drive cell lineage to the desired tissue. To provide appropriate strain on a local level, new generations of scaffolds often involve anisotropic spatially graded mechanical properties that cannot be characterised with traditional materials testing equipment. Volumetric examination is possible with three-dimensional (3D) imaging, in situ loading and digital volume correlation (DVC). Micro-CT and DVC were utilised in this study on two sizes of 3D-printed inorganic/organic hybrid scaffolds (n = 2 and n = 4) with a repeating homogenous structure intended for cartilage regeneration. Deformation was observed with a spatial resolution of under 200 µm whilst maintaining displacement random errors of 0.97 µm, strain systematic errors of 0.17% and strain random errors of 0.031%. Digital image correlation (DIC) provided an analysis of the external surfaces whilst DVC enabled localised strain concentrations to be examined throughout the full 3D volume. Strain values derived using DVC correlated well against manually calculated ground-truth measurements (R2 = 0.98, n = 8). The technique ensures the full 3D micro-mechanical environment experienced by cells is intimately considered, enabling future studies to further examine scaffold designs for regenerative medicine.

5.
Materials (Basel) ; 13(18)2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899671

RESUMEN

Osteochondral injuries are increasingly prevalent, yet success in articular cartilage regeneration remains elusive, necessitating the development of new surgical interventions and novel medical devices. As part of device development, animal models are an important milestone in illustrating functionality of novel implants. Inspection of the tissue-biomaterial system is vital to understand and predict load-sharing capacity, fixation mechanics and micromotion, none of which are directly captured by traditional post-mortem techniques. This study aims to characterize the localised mechanics of an ex vivo ovine osteochondral tissue-biomaterial system extracted following six weeks in vivo testing, utilising laboratory micro-computed tomography, in situ loading and digital volume correlation. Herein, the full-field displacement and strain distributions were visualised across the interface of the system components, including newly formed tissue. The results from this exploratory study suggest that implant micromotion in respect to the surrounding tissue could be visualised in 3D across multiple loading steps. The methodology provides a non-destructive means to assess device performance holistically, informing device design to improve osteochondral regeneration strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA