Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Bull Atmos Sci Technol ; 5(1): 2, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586869

RESUMEN

Terrestrial gamma-ray flashes (TGFs) are bursts of energetic X- and gamma-rays emitted from thunderstorms. The Atmosphere-Space Interactions Monitor (ASIM) mounted onto the International Space Station (ISS) is dedicated to measure TGFs and optical signatures of lightning; ISS LIS (Lightning Imaging Sensor) detects lightning flashes allowing for simultaneous measurements with ASIM. Whilst ASIM measures ∼300-400 TGFs per year, ISS LIS detects ∼106 annual lightning flashes giving a disproportion of four orders of magnitude. Based on the temporal evolution of lightning flashes and the spatial pattern of the constituing events, we present an algorithm to reduce the number of space-detected flashes potentially associated with TGFs by ∼ 60% and of associated LIS groups by ∼ 95%. We use ASIM measurements to confirm that the resulting flashes are indeed those associated with TGFs detected at approx. 400 km altitude and thus benchmark our algorithm preserving 70-80% of TGFs from concurrent ASIM-LIS measurements. We compare how the radiance, footprint size and the global distribution of lightning flashes of the reduced set relates to the average of all measured lightning flashes and do not observe any significant difference. Finally, we present a parameter study of our algorithm and discuss which parameters can be tweaked to maximize the reduction efficiency whilst keeping flashes associated to TGFs. In the future, this algorithm will hence be capable of facilitating the search for TGFs in a reduced set of lightning flashes measured from space.

2.
Geophys Res Lett ; 49(6): e2021GL095879, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35864928

RESUMEN

We report on observations of corona discharges at the uppermost region of clouds characterized by emissions in a blue band of nitrogen molecules at 337 nm, with little activity in the red band of lightning leaders at 777.4 nm. Past work suggests that they are generated in cloud tops reaching the tropopause and above. Here we explore their occurrence in two convective environments of the same storm: one is developing with clouds reaching above the tropopause, and one is collapsing with lower cloud tops. We focus on those discharges that form a distinct category with rise times below 20 µs, implying that they are at the very top of the clouds. The discharges are observed in both environments. The observations suggest that a range of storm environments may generate corona discharges and that they may be common in convective surges.

3.
Geophys Res Lett ; 48(4): 2020GL090700, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-34511659

RESUMEN

The Atmosphere-Space Interactions Monitor measures Terrestrial Gamma-Ray Flashes (TGFs) simultaneously with optical emissions from associated lightning activity. We analyzed optical measurements at 180-230, 337, and 777.4 nm related to 69 TGFs observed between June 2018 and October 2019. All TGFs are associated with optical emissions and 90% of them are at the onset of a large optical pulse, suggesting that they are connected with the initiation of current surges. A model of photon delay induced by cloud scattering suggests that the sources of the optical pulses are from 0.7 ms before to 4.4 ms after the TGFs, with a median of -10 ± 80 µs, and 1-5 km below the cloud top. The pulses have rise times comparable to lightning but longer durations. Pulse amplitudes at 337 nm are ∼3 times larger than at 777.4 nm. The results support the leader-streamer mechanism for TGF generation.

5.
Nature ; 589(7842): 371-375, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33473225

RESUMEN

Blue jets are lightning-like, atmospheric electric discharges of several hundred millisecond duration that fan into cones as they propagate from the top of thunderclouds into the stratosphere1. They are thought to initiate in an electric breakdown between the positively charged upper region of a cloud and a layer of negative charge at the cloud boundary and in the air above. The breakdown forms a leader that transitions into streamers2 when propagating upwards3. However, the properties of the leader, and the altitude to which it extends above the clouds, are not well characterized4. Blue millisecond flashes in cloud tops5,6 have previously been associated with narrow bipolar events7,8, which are 10- to 30-microsecond pulses in wideband electric field records, accompanied by bursts of intense radiation at 3 to 300 megahertz from discharges with short (inferred) channel lengths (less than one kilometre)9-11. Here we report spectral measurements from the International Space Station, which offers an unimpeded view of thunderclouds, with 10-microsecond temporal resolution. We observe five intense, approximately 10-microsecond blue flashes from a thunderstorm cell. One flash initiates a pulsating blue jet to the stratopause (the interface between the stratosphere and the ionosphere). The observed flashes were accompanied by 'elves'12 in the ionosphere. Emissions from lightning leaders in the red spectral band are faint and localized, suggesting that the flashes and the jet are streamer ionization waves, and that the leader elements at their origin are short and localized. We propose that the microsecond flashes are the optical equivalent of negative narrow bipolar events observed in radio waves. These are known to initiate lightning within the cloud and to the ground, and blue lightning into the stratosphere, as reported here.

6.
Science ; 367(6474): 183-186, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31826957

RESUMEN

Terrestrial gamma-ray flashes (TGFs) are transient gamma-ray emissions from thunderstorms, generated by electrons accelerated to relativistic energies in electric fields. Elves are ultraviolet and optical emissions excited in the lower ionosphere by electromagnetic waves radiated from lightning current pulses. We observed a TGF and an associated elve using the Atmosphere-Space Interactions Monitor on the International Space Station. The TGF occurred at the onset of a lightning current pulse that generated an elve, in the early stage of a lightning flash. Our measurements suggest that the current onset is fast and has a high amplitude-a prerequisite for elves-and that the TGF is generated in the electric fields associated with the lightning leader.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA