Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Genes (Basel) ; 14(1)2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36672846

RESUMEN

The work aims to investigate biofilm formation and biofilm/adhesion-encoding genes in coagulase-negative staphylococci (CoNS) species recovered from blood culture isolates. Eighty-nine clinical CoNS were confirmed using the VITEK 2 system, and antibiotic susceptibility testing of isolates was conducted using the Kirby-Bauer disk diffusion method against a panel of 20 antibiotics. Isolates were qualitatively screened using the Congo red agar medium. Quantitative assays were performed on microtiter plates, where the absorbances of the solubilised biofilms were recorded as optical densities and quantified. In all, 12.4% of the isolates were strong biofilm formers, 68.5% had moderate biofilm capacity, and 17.9% showed weak capacity. A subset of 18 isolates, mainly methicillin-resistant S. epidermidis, were investigated for adherence-related genes using whole-genome sequencing and bioinformatics analysis. The highest antibiotic resistance rates for strongly adherent isolates were observed against penicillin (100%) and cefoxitin (81.8%), but the isolates showed no resistance to linezolid (0.0%) and tigecycline (0.0%). The icaABC genes involved in biofilm formation were detected in 50% of the screened isolates. Other adherence-related genes, including autolysin gene atl (88.8%), elastin binding protein gene ebp (94.4%), cell wall-associated fibronectin-binding protein gene ebh (66.7%), clumping factor A gene clfA (5.5%), and pili gene ebpC (22.2%) were also found. The insertion sequence IS256, involved in biofilm formation, was found in 10/18 (55.5%) screened isolates. We demonstrate a high prevalence of biofilm-forming coagulase-negative staphylococci associated with various resistance phenotypes and a substantial agreement between the possession of biofilm-associated genes and the biofilm phenotype.


Asunto(s)
Antibacterianos , Infecciones Estafilocócicas , Humanos , Antibacterianos/farmacología , Coagulasa/genética , Coagulasa/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/genética , Sudáfrica , Staphylococcus/genética , Fenotipo , Genómica , Biopelículas
2.
Front Microbiol ; 12: 656306, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421833

RESUMEN

Staphylococcus epidermidis has become an important nosocomial pathogen. Multidrug resistance makes S. epidermidis infections difficult to treat. The study aims to describe the genomic characteristics of methicillin-resistant S. epidermidis (MRSE) isolated from clinical sources, to comprehend the genetic basis of antibiotic resistance, virulence, and potential pathogenicity. Sixteen MRSE underwent whole-genome sequencing, and bioinformatics analyses were carried out to ascertain their resistome, virulome, mobilome, clonality, and phylogenomic relationships. In all, 75% of isolates displayed multidrug resistance and were associated with the carriage of multiple resistance genes including mecA, blaZ, tet(K), erm(A), erm(B), erm(C), dfrG, aac(6')-aph(2''), and cat(pC221) conferring resistance to ß-lactams, tetracyclines, macrolide-lincosamide-streptogramin B, aminoglycosides, and phenicols, which were located on both plasmids and chromosomes. Their virulence profiles were evidenced by the presence of genes involved in adherence/biofilm formation (icaA, icaB, icaC, atl, ebh, and ebp), immune evasion (adsA, capC, and manA), and antiphagocytosis (rmlC, cdsA, and A). The community-acquired SCCmec type IV was the most common SCCmec type. The CoNS belonged to seven multilocus sequence types (MLSTs) and carried a diversity of mobile genetic elements such as phages, insertion sequences, and plasmids. The bacterial anti-phage defense systems clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR-Cas) immunity phage system and restriction-modification system (R-M system) and the arginine catabolic mobile element (ACME) involved in immune evasion and transport of virulence genes were also found. The insertion sequence, IS256, linked with virulence, was found in 56.3% of isolates. Generally, the isolates clustered according to STs, with some similarity but also considerable variability within isolates. Whole-genome sequencing and bioinformatics analysis provide insights into the likely pathogenicity and antibiotic resistance of S. epidermidis, necessitating surveillance of this emerging pathogen.

3.
Antibiotics (Basel) ; 10(2)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670659

RESUMEN

Coagulase-negative staphylococci (CoNS) are increasingly associated with nosocomial infections, especially among the immunocompromised and those with invasive medical devices, posing a significant concern. We report on clinical multidrug-resistant CoNS from the uMgungundlovu District, KwaZulu-Natal Province, South Africa, as emerging pathogens. One hundred and thirty presumptive CoNS were obtained from blood cultures. Culture, biochemical tests, and the Staphaurex™ Latex Agglutination Test were used for the initial identification of CoNS isolates; confirmation and speciation were undertaken by the VITEK 2 system. Susceptibilities of isolates against a panel of 20 antibiotics were determined using the Kirby-Bauer disk diffusion method, and the multiple antibiotic resistance (MAR) indices of the isolates were determined. The polymerase chain reaction (PCR) was used to amplify the mecA gene to confirm methicillin resistance. Overall, 89/130 presumptive CoNS isolates were confirmed as CoNS by the VITEK 2 system. Of these, 68 (76.4%) isolates were putatively methicillin-resistant by the phenotypic cefoxitin screen test and 63 (92.6%) were mecA positive. Staphylococcus epidermidis (19.1%), S. hominis ssp. hominis (15.7%), and S. haemolyticus (16.9%) were the most common CoNS species. Isolates showed high percentage resistance against penicillin (100.0%), erythromycin (74.2%), and azithromycin (74.2%) while displaying high susceptibilities to linezolid (95.5%), gentamicin (95.5%), and tigecycline (94.4%). Multidrug resistance (MDR) was observed in 76.4% of isolates. MAR index calculation revealed 71.9% of isolates with MAR index >0.2 and 20.2% >0.5. Isolates with the highest MAR indices (0.7 and 0.8) were recovered from the neonatal intensive care unit. Fifty-one MDR antibiograms were observed. The high prevalence of methicillin resistance and multidrug resistance in several species of CoNS necessitates surveillance of this emerging pathogen, currently considered a contaminant of microbial cultures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA