Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 149(6): 064106, 2018 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-30111120

RESUMEN

The hierarchical quantum master equation (HQME) approach is an accurate method to describe quantum transport in interacting nanosystems. It generalizes perturbative master equation approaches by including higher-order contributions as well as non-Markovian memory and allows for the systematic convergence to the numerically exact result. As the HQME method relies on a decomposition of the bath correlation function in terms of exponentials, however, its application to systems at low temperatures coupled to baths with complexer band structures has been a challenge. In this publication, we outline an extension of the HQME approach, which uses re-summation over poles and can be applied to calculate transient currents at a numerical cost that is independent of temperature and band structure of the baths. We demonstrate the performance of the extended HQME approach for noninteracting tight-binding model systems of increasing complexity as well as for the spinless Anderson-Holstein model.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(6 Pt 1): 061143, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20365154

RESUMEN

If a fluctuating medium is confined, the ensuing perturbation of its fluctuation spectrum generates Casimir-like effective forces acting on its confining surfaces. Near a continuous phase transition of such a medium the corresponding order parameter fluctuations occur on all length scales and therefore close to the critical point this effect acquires a universal character, i.e., to a large extent it is independent of the microscopic details of the actual system. Accordingly it can be calculated theoretically by studying suitable representative model systems. We report on the direct measurement of critical Casimir forces by total internal reflection microscopy with femtonewton resolution. The corresponding potentials are determined for individual colloidal particles floating above a substrate under the action of the critical thermal noise in the solvent medium, constituted by a binary liquid mixture of water and 2,6-lutidine near its lower consolute point. Depending on the relative adsorption preferences of the colloid and substrate surfaces with respect to the two components of the binary liquid mixture, we observe that, upon approaching the critical point of the solvent, attractive or repulsive forces emerge and supersede those prevailing away from it. Based on the knowledge of the critical Casimir forces acting in film geometries within the Ising universality class and with equal or opposing boundary conditions, we provide the corresponding theoretical predictions for the sphere-planar wall geometry of the experiment. The experimental data for the effective potential can be interpreted consistently in terms of these predictions and a remarkable quantitative agreement is observed.


Asunto(s)
Mezclas Complejas/química , Modelos Químicos , Modelos Estadísticos , Soluciones/química , Simulación por Computador , Estrés Mecánico
3.
Nature ; 451(7175): 172-5, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18185584

RESUMEN

When fluctuating fields are confined between two surfaces, long-range forces arise. A famous example is the quantum-electrodynamical Casimir force that results from zero-point vacuum fluctuations confined between two conducting metal plates. A thermodynamic analogue is the critical Casimir force: it acts between surfaces immersed in a binary liquid mixture close to its critical point and arises from the confinement of concentration fluctuations within the thin film of fluid separating the surfaces. So far, all experimental evidence for the existence of this effect has been indirect. Here we report the direct measurement of critical Casimir force between a single colloidal sphere and a flat silica surface immersed in a mixture of water and 2,6-lutidine near its critical point. We use total internal reflection microscopy to determine in situ the forces between the sphere and the surface, with femtonewton resolution. Depending on whether the adsorption preferences of the sphere and the surface for water and 2,6-lutidine are identical or opposite, we measure attractive and repulsive forces, respectively, that agree quantitatively with theoretical predictions and exhibit exquisite dependence on the temperature of the system. We expect that these features of critical Casimir forces may result in novel uses of colloids as model systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA