Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (171)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34125090

RESUMEN

Langmuir probes have long been used in experimental plasma physics research as the primary diagnostic for particle fluxes (i.e., electron and ion fluxes) and their local spatial concentrations, for electron temperatures, and for electrostatic plasma potential measurements, since its invention by Langmuir in the early 1920s. Emissive probes are used for measuring plasma potentials. The protocols exhibited in this work serve to demonstrate how these probes may be built for use in a vacuum chamber in which a plasma discharge may be confined and sustained. This involves vacuum techniques for building what is essentially an electrical feedthrough, one that is rotatable and translatable. Certainly, complete Langmuir probe systems may be purchased, but they can also be built by the user at considerable cost savings, and at the same time be more directly adapted to their use in a particular experiment. We describe the use of Langmuir probes and emissive probes in mapping the electrostatic plasma potential from the body of the plasma up to the sheath region of a plasma boundary, which in these experiments is created by a negatively biased electrode immersed within the plasma, in order to compare the two diagnostic techniques and assess their relative advantages and weaknesses. Although Langmuir probes have the advantage of measuring the plasma density and electron temperature most accurately, emissive probes can measure electrostatic plasma potentials more accurately throughout the plasma, up to and including the sheath region.


Asunto(s)
Frío , Electrones , Electrodos , Temperatura
2.
Phys Rev Lett ; 104(22): 225003, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20867178

RESUMEN

Recent experiments have shown that ions in weakly collisional plasmas containing two ion species of comparable densities nearly reach a common velocity at the sheath edge. A new theory suggests that collisional friction between the two ion species enhanced by two stream instability reduces the drift velocity of each ion species relative to each other near the sheath edge and finds that the difference in velocities at the sheath edge depends on the relative concentrations of the species. It is small when the concentrations are comparable and is large, with each species reaching its own Bohm velocity, when the relative concentration differences are large. To test these findings, ion drift velocities were measured with laser-induced fluorescence in argon-xenon plasmas. We show that the predictions are in excellent agreement with the first experimental tests of the new model.

3.
Rev Sci Instrum ; 80(3): 033502, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19334917

RESUMEN

Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

4.
Rev Sci Instrum ; 79(9): 093506, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19044412

RESUMEN

Significant improvements have been made to the nonambipolar electron source (NES), a radio frequency (rf) plasma-based electron source that does not rely on electron emission at a cathode surface [B. Longmier, S. Baalrud, and N. Hershkowitz, Rev. Sci. Instrum. 77, 113504 (2006)]. A prototype NES has produced 30 A of continuous electron current, using 2 SCCM (SCCM denotes cubic centimeter per minute at STP) Xe, 1300 W rf power at 13.56 MHz, yielding a 180 times gas utilization factor. A helicon mode transition has also been identified during NES operation with an argon propellant, using 15 SCCM Ar, 1000 W rf, and 100 G magnetic field. This NES technology has the ability to replace hollow cathode electron sources and to enable high power electric propulsion missions, eliminating one of the lifetime restrictions that many ion thrusters have previously been faced with.

5.
Rev Sci Instrum ; 78(11): 116105, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18052513

RESUMEN

Laser-induced fluorescence (LIF) measurements have been performed for the first time in a low temperature (Te approximately 0.6 eV) Xe plasma using a tunable diode laser in the visible range of wavelengths. The transition in Xe II involved the (3P1)5d[3]7/2 metastable state and the excitation wavelength was found to be 680.570+/-0.001 nm (air). LIF measurements of I 2 in a room temperature iodine gas cell were used to monitor the wavelength of the laser during the measurements.

6.
Phys Rev Lett ; 99(15): 155004, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17995177

RESUMEN

For a weakly collisional two-ion species plasma, it is shown that the minimum phase velocity of ion acoustic waves (IAWs) at the sheath-presheath boundary is equal to twice the phase velocity in the bulk plasma. This condition provides a theoretical basis for the experimental results that each ion species leaves the plasma with a drift velocity equal to the IAW phase velocity in the bulk plasma [D. Lee et al., Appl. Phys. Lett. 91, 041505 (2007)10.1063/1.2760149]. It is shown that this result is a consequence of the generalized Bohm criterion and fluid expressions for the IAW phase velocities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA