Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 33(7): 929-36, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16060533

RESUMEN

We developed BRISK-CON-VPS, a rapid phase-contrast cine approach that is a hybrid of the BRISK-VPS (Block Regional Interpolation Scheme for k-space) and conventional (CONV-VPS) scanning employing k-space views per segment (VPS). BRISK-CON-VPS allows data acquisition approximately four times faster than CONV-VPS imaging and has the advantage compared to BRISK-VPS that it can potentially be incorporated into real-time applications. In BRISK-CON-VPS contiguous regions of k-space are sampled using a views per segment factor that is varied as a function of distance from the k-space center. Computational fluid dynamics (CFD) data were used to simulate CONV-VPS, BRISK-VPS, and BRISK-CON-VPS. BRISK-CON-VPS was simulated by incrementing the VPS progressively with increasing distance from the k-space origin while BRISK-VPS was simulated using a uniform VPS applied to the sparse sampling scheme. Simulations showed that up to a base VPS of 5, both BRISK-CON-VPS and BRISK-VPS retained excellent axial-velocity accuracy. Secondary in-plane velocity flow fields were well represented with BRISK-CON-VPS and BRISK-VPS up to a base VPS of 3. CONV-VPS, BRISK-CON-VPS, and BRISK-VPS were applied in vivo and shown to provide comparable quantitative flow data. BRISK-CON-VPS accomplishes breath-hold acquisitions as efficiently as BRISK-VPS, but without requiring data interpolation or under-sampling k-space.


Asunto(s)
Simulación por Computador , Circulación Coronaria , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Modelos Cardiovasculares , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Radiografía
2.
J Magn Reson Imaging ; 22(2): 248-57, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16028256

RESUMEN

PURPOSE: To evaluate different grades of in-stent stenosis in a nickel-titanium stent with MRI. MATERIALS AND METHODS: Magnetic resonance phase velocity mapping (MR-PVM) was used to measure flow velocity through a 9-mm NiTi stent with three different degrees of stenosis in a phantom study. The tested stenotic geometries were 1) axisymmetric 75%, 2) axisymmetric 90%, and 3) asymmetric 50%. The MR-PVM data were subsequently compared with the velocities from computational fluid dynamic (CFD) simulations of identical conditions. RESULTS: Good quantitative agreement in velocity distribution for the 50% and 75% stenoses was observed. The agreement was poor for the 90% stenosis, most likely due to turbulence and the high-velocity gradients found in the small luminal area relative to the pixel resolution in our imaging settings. CONCLUSION: The accuracy of the MRI velocities inside the stented area renders MRI a modality that may be used to assess moderate to severe in-stent restenosis (ISR) in medium-sized vascular stents in peripheral vessels, such as the iliac, carotid, and femoral arteries. Advances in MR instrumentation may provide sufficient resolution to obtain adequate velocity information from smaller vessels, such as the coronary arteries, and allow MRI to substitute for invasive and expensive catheterization procedures currently in clinical use.


Asunto(s)
Imagen por Resonancia Cinemagnética , Fantasmas de Imagen , Stents/efectos adversos , Constricción Patológica/diagnóstico , Circulación Coronaria/fisiología , Falla de Equipo , Análisis de Falla de Equipo , Humanos , Modelos Anatómicos , Níquel , Flujo Pulsátil , Sensibilidad y Especificidad , Titanio , Resistencia Vascular
3.
Technol Health Care ; 11(6): 443-55, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14757922

RESUMEN

The development of Intimal Hyperplasia (IH) in saphenous vein coronary artery bypass grafts (SV-CABG) is responsible for the short-term patency of these grafts. Previous studies of SV-CABG models were performed on rigid anastomotic vessels. However, the effects of compliance, bulging and curvature at the anastomosis on the general hemodynamic field, due to compliance and geometric mismatch between the vein and the artery have not been evaluated. We studied axial and transverse velocities by Laser Doppler Velocimetry on a compliant, in vitro, anatomical model of an end-to-side saphenous vein graft (SVG) to left anterior descending (LAD). The model incorporated a bulge at the sinus and curvature at the graft-host junction. Physiologic pressure and flow conditions pertaining to SV-CABG were applied. The presence of the bulge and curvature showed differences in the velocity profiles in comparison with previous rigid model studies. Dynamic separation zones were temporally augmented at the flow divider. The moving stagnation point at the floor of the host vessel was observed to move past the toe of the model during the accelerating portion of the cycle. These findings suggest that the presence of the bulge curvature and compliance may further favor conditions for the development of intimal hyperplasia (IH) at the floor of a CABG.


Asunto(s)
Puente de Arteria Coronaria , Hemodinámica , Vena Safena/cirugía , Humanos , Flujometría por Láser-Doppler , Modelos Biológicos , Vena Safena/fisiología , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA