Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Genet Metab ; 119(3): 187-206, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27665271

RESUMEN

In December 2014, a workshop entitled "Nutritional Interventions in Primary Mitochondrial Disorders: Developing an Evidence Base" was convened at the NIH with the goals of exploring the use of nutritional interventions in primary mitochondrial disorders (PMD) and identifying knowledge gaps regarding their safety and efficacy; identifying research opportunities; and forging collaborations among researchers, clinicians, patient advocacy groups, and federal partners. Sponsors included the NIH, the Wellcome Trust, and the United Mitochondrial Diseases Foundation. Dietary supplements have historically been used in the management of PMD due to their potential benefits and perceived low risk, even though little evidence exists regarding their effectiveness. PMD are rare and clinically, phenotypically, and genetically heterogeneous. Thus patient recruitment for randomized controlled trials (RCTs) has proven to be challenging. Only a few RCTs examining dietary supplements, singly or in combination with other vitamins and cofactors, are reported in the literature. Regulatory issues pertaining to the use of dietary supplements as treatment modalities further complicate the research and patient access landscape. As a preface to exploring a research agenda, the workshop included presentations and discussions on what PMD are; how nutritional interventions are used in PMD; challenges and barriers to their use; new technologies and approaches to diagnosis and treatment; research opportunities and resources; and perspectives from patient advocacy, industry, and professional organizations. Seven key areas were identified during the workshop. These areas were: 1) defining the disease, 2) clinical trial design, 3) biomarker selection, 4) mechanistic approaches, 5) challenges in using dietary supplements, 6) standards of clinical care, and 7) collaboration issues. Short- and long-term goals within each of these areas were identified. An example of an overarching goal is the enrollment of all individuals with PMD in a natural history study and a patient registry to enhance research capability. The workshop demonstrates an effective model for fostering and enhancing collaborations among NIH and basic research, clinical, patient, pharmaceutical industry, and regulatory stakeholders in the mitochondrial disease community to address research challenges on the use of dietary supplements in PMD.


Asunto(s)
Suplementos Dietéticos , Enfermedades Mitocondriales/dietoterapia , Estado Nutricional , Vitaminas/uso terapéutico , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo
3.
Neuromuscul Disord ; 13(4): 334-40, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12868503

RESUMEN

In a patient with clinical features of both myoclonus epilepsy ragged-red fibers (MERRF) and Kearns-Sayre syndrome (KSS), we identified a novel guanine-to-adenine mitochondrial DNA (mtDNA) mutation at nucleotide 3255 (G3255A) of the tRNA(Leu(UUR)) gene. Approximately 5% of the skeletal muscle fibers had excessive mitochondria by succinate dehydrogenase histochemistry while a smaller proportion showed cytochrome c oxidase (COX) deficiency. In skeletal muscle, activities of mitochondrial respiratory chain complexes I, I + III, II + III, and IV were reduced. The G3255A transition was heteroplasmic in all tissues tested: muscle (53%), urine sediment (67%), peripheral leukocytes (22%), and cultured skin fibroblasts (< 2%). The mutation was absent in 50 control DNA samples. Single-fiber analysis revealed a higher proportion of mutation in COX-deficient RRF (94% +/- 5, n = 25) compared to COX-positive non-RRF (18% +/- 9, n = 21). The identification of yet another tRNA(Leu(UUR)) mutation reinforces the concept that this gene is a hot-spot for pathogenic mtDNA mutations.


Asunto(s)
ADN Mitocondrial/metabolismo , Síndrome de Kearns-Sayre/genética , Síndrome MERRF/genética , Mutación , ARN de Transferencia de Leucina/metabolismo , ARN/metabolismo , Adenina/metabolismo , Adulto , Animales , Secuencia de Bases , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Guanina/metabolismo , Humanos , Masculino , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Reacción en Cadena de la Polimerasa , ARN Mitocondrial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA