Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glycobiology ; 20(5): 567-75, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20065073

RESUMEN

Glycoprotein folding and degradation in the endoplasmic reticulum (ER) is mediated by the ER quality control system. Mannose trimming plays an important role by forming specific N-glycans that permit the recognition and sorting of terminally misfolded conformers for ERAD (ER-associated degradation). The EDEM (ER degradation enhancing alpha-mannosidase-like protein) subgroup of proteins belonging to the Class I alpha1,2-mannosidase family (glycosylhydrolase family 47) has been shown to enhance ERAD. We recently reported that overexpression of EDEM3 enhances glycoprotein ERAD with a concomitant increase in mannose-trimming activity in vivo. Herein, we report that overexpression of EDEM1 produces Glc(1)Man(8)GlcNAc(2) isomer C on terminally misfolded null Hong Kong alpha1-antitrypsin (NHK) in vivo. Levels of this isomer increased throughout the chase period and comprised approximately 10% of the [(3)H]mannose-labeled N-glycans on NHK after a 3-h chase. Furthermore, overexpression of EDEM1 E220Q containing a mutation in a conserved catalytic residue essential for alpha1,2-mannosidase activity did not yield detectable levels of Glc(1)Man(8)GlcNAc(2) isomer C. Yet, the same extent of NHK ERAD-enhancement was observed in both EDEM1 and EDEM1 E220Q overexpressing cells. This can be attributed to both wild-type and mutant EDEM1 inhibiting aberrant NHK dimer formation. We further analyzed the N-glycan profile of total cellular glycoproteins from HepG2 cells stably overexpressing EDEM1 and found that the relative amount of Man(7)GlcNAc(2) isomer A, which lacks the terminal B and C branch mannoses, was increased compared to parental HepG2 cells. Based on this observation, we conclude that EDEM1 activity trims mannose from the C branch of N-glycans in vivo.


Asunto(s)
Manosa/química , Manosa/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Células Cultivadas , Retículo Endoplásmico/química , Retículo Endoplásmico/metabolismo , Humanos , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Estereoisomerismo
2.
Protein Expr Purif ; 66(1): 1-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19249370

RESUMEN

Mannan outer chain N-glycan structures are yeast/fungal-specific typically found on secreted and cell wall glycoproteins. Mannan outer chains consist of an alpha-1,6 polymannose backbone attached to a Man(8-10)(GlcNAc)(2) core. The backbone contains branches of alpha-1,2 mannose residues, terminated with alpha-1,3 mannose and decorated with alpha-1,2 mannose phosphate. Mannan biosynthesis starts in the Golgi with the initial polymerization of the alpha-1,6 linked mannose backbone by the M-Pol I complex. Constructs encoding soluble portions of the M-Pol I subunits, Mnn9p and Van1p from Saccharomyces cerevisiae, were expressed in Pichia pastoris. Both subunits had to be expressed in the same strain to obtain the recombinant proteins. Recombinant M-Pol I was made only by the KM71 strain transformed with two vectors: one encoding Mnn9p and the other encoding Van1p. Soluble secreted M-Pol I was purified by sequential chromatography on DEAE-Trisacryl, GDP-Hexanolamine-Sepharose and Superdex 200. Characterization of the purified complex indicates that recombinant M-Pol 1 is a Mnn9p-Van1p heterodimer. Purified M-Pol I was active with alpha-1,6 mannobiose as acceptor and GDP-mannose as donor. HPLC identified five products confirmed to be 3-7 mannose residues long. Digestion with linkage-specific alpha-mannosidases revealed that the linkage formed is exclusively alpha-1,6. No alpha-1,2 mannosyltransferase activity, reported previously for M-Pol I immunoprecipitates from cell extracts was detected. These results provide further information on the role of M-Pol I in mannan biosynthesis.


Asunto(s)
Mananos , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Conformación de Carbohidratos , Secuencia de Carbohidratos , Mananos/química , Mananos/metabolismo , Manosiltransferasas , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
3.
Acta Crystallogr D Biol Crystallogr ; 64(Pt 3): 227-36, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18323617

RESUMEN

Class I alpha-mannosidases (glycoside hydrolase family GH47) play key roles in the maturation of N-glycans and the ER-associated degradation of unfolded glycoproteins. The 1.95 A resolution structure of a fungal alpha-1,2-mannosidase in complex with the substrate analogue methyl-alpha-D-lyxopyranosyl-(1',2)-alpha-D-mannopyranoside (LM) shows the intact disaccharide spanning the -1/+1 subsites, with the D-lyxoside ring in the -1 subsite in the 1C4 chair conformation, and provides insight into the mechanism of catalysis. The absence of the C5' hydroxymethyl group on the D-lyxoside moiety results in the side chain of Arg407 adopting two alternative conformations: the minor one interacting with Asp375 and the major one interacting with both the D-lyxoside and the catalytic base Glu409, thus disrupting its function. Chemical modification of Asp375 has previously been shown to inactivate the enzyme. Taken together, the data suggest that Arg407, which belongs to the conserved sequence motif RPExxE, may act to modulate the activity of the enzyme. The proposed mechanism for modulating the activity is potentially a general mechanism for this superfamily.


Asunto(s)
Arginina/química , Hongos/enzimología , alfa-Manosidasa/química , alfa-Manosidasa/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Mol Biol Cell ; 19(1): 216-25, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18003979

RESUMEN

We had previously shown that endoplasmic reticulum (ER)-associated degradation (ERAD) of glycoproteins in mammalian cells involves trimming of three to four mannose residues from the N-linked oligosaccharide Man(9)GlcNAc(2). A possible candidate for this activity, ER mannosidase I (ERManI), accelerates the degradation of ERAD substrates when overexpressed. Although in vitro, at low concentrations, ERManI removes only one specific mannose residue, at very high concentrations it can excise up to four alpha1,2-linked mannose residues. Using small interfering RNA knockdown of ERManI, we show that this enzyme is required for trimming to Man(5-6)GlcNAc(2) and for ERAD in cells in vivo, leading to the accumulation of Man(9)GlcNAc(2) and Glc(1)Man(9)GlcNAc(2) on a model substrate. Thus, trimming by ERManI to the smaller oligosaccharides would remove the glycoprotein from reglucosylation and calnexin binding cycles. ERManI is strikingly concentrated together with the ERAD substrate in the pericentriolar ER-derived quality control compartment (ERQC) that we had described previously. ERManI knockdown prevents substrate accumulation in the ERQC. We suggest that the ERQC provides a high local concentration of ERManI, and passage through this compartment would allow timing of ERAD, possibly through a cycling mechanism. When newly made glycoproteins cannot fold properly, transport through the ERQC leads to trimming of a critical number of mannose residues, triggering a signal for degradation.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Compartimento Celular , Retículo Endoplásmico/enzimología , Manosidasas/metabolismo , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Línea Celular , Humanos , Ratones , Modelos Biológicos , Especificidad por Sustrato
5.
Biochem Biophys Res Commun ; 362(3): 626-32, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17727818

RESUMEN

Terminally misfolded or unassembled proteins are degraded by the cytoplasmic ubiquitin-proteasome pathway in a process known as ERAD (endoplasmic reticulum-associated protein degradation). Overexpression of ER alpha1,2-mannosidase I and EDEMs target misfolded glycoproteins for ERAD, most likely due to trimming of N-glycans. Here we demonstrate that overexpression of Golgi alpha1,2-mannosidase IA, IB, and IC also accelerates ERAD of terminally misfolded human alpha1-antitrypsin variant null (Hong Kong) (NHK), and mannose trimming from the N-glycans on NHK in 293 cells. Although transfected NHK is primarily localized in the ER, some NHK also co-localizes with Golgi markers, suggesting that mannose trimming by Golgi alpha1,2-mannosidases can also contribute to NHK degradation.


Asunto(s)
Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Manosidasas/química , alfa 1-Antitripsina/química , Alcaloides/química , Animales , Línea Celular , Inhibidores Enzimáticos/farmacología , Humanos , Manosa/química , Ratones , Oligosacáridos/química , Conformación Proteica , Desnaturalización Proteica , Pliegue de Proteína
6.
J Biol Chem ; 282(4): 2558-66, 2007 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-17121831

RESUMEN

There are three mammalian Golgi alpha1,2-mannosidases, encoded by different genes, that form Man5GlcNAc2 from Man(8-9)GlcNAc2 for the biosynthesis of hybrid and complex N-glycans. Northern blot analysis and in situ hybridization indicate that the three paralogs display distinct developmental and tissue-specific expression. The physiological role of Golgi alpha1,2-mannosidase IB was investigated by targeted gene ablation. The null mice have normal gross appearance at birth, but they display respiratory distress and die within a few hours. Histology of fetal lungs the day before birth indicate some delay in development, whereas neonatal lungs show extensive pulmonary hemorrhage in the alveolar region. No significant histopathological changes occur in other tissues. No remarkable ultrastructural differences are detected between wild type and null lungs. The membranes of a subset of bronchiolar epithelial cells are stained with lectins from Phaseolus vulgaris (leukoagglutinin and erythroagglutinin) and Datura stramonium in wild type lungs, but this staining disappears in lungs from null mice. Mass spectrometry of N-glycans from different tissues shows no significant changes in global N-glycans of null mice. Therefore, only a few glycoproteins required for normal lung function depend on alpha1,2-mannosidase IB for maturation. There are no apparent differences in the expression of several lung epithelial cell and endothelial cell markers between null and wild type mice. The alpha1,2-mannosidase IB null phenotype differs from phenotypes caused by ablation of other enzymes in N-glycan biosynthesis and from other mouse gene disruptions that affect pulmonary development and function.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Aparato de Golgi/genética , Manosidasas/genética , Insuficiencia Respiratoria/genética , Animales , Femenino , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica , Aparato de Golgi/enzimología , Lectinas , Pulmón/embriología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Polisacáridos/metabolismo , Embarazo
7.
J Biol Chem ; 281(14): 9650-8, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16431915

RESUMEN

Quality control in the endoplasmic reticulum ensures that only properly folded proteins are retained in the cell through mechanisms that recognize and discard misfolded or unassembled proteins in a process called endoplasmic reticulum-associated degradation (ERAD). We previously cloned EDEM (ER degradation-enhancing alpha-mannosidase-like protein) and showed that it accelerates ERAD of misfolded glycoproteins. We now cloned mouse EDEM3, a soluble homolog of EDEM. EDEM3 consists of 931 amino acids and has all the signature motifs of Class I alpha-mannosidases (glycosyl hydrolase family 47) in its N-terminal domain and a protease-associated motif in its C-terminal region. EDEM3 accelerates glycoprotein ERAD in transfected HEK293 cells, as shown by increased degradation of misfolded alpha1-antitrypsin variant (null (Hong Kong)) and of TCRalpha. Overexpression of EDEM3 also greatly stimulates mannose trimming not only from misfolded alpha1-AT null (Hong Kong) but also from total glycoproteins, in contrast to EDEM, which has no apparent alpha1,2-mannosidase activity. Furthermore, overexpression of the E147Q EDEM3 mutant, which has the mutation in one of the conserved acidic residues essential for enzyme activity of alpha1,2-mannosidases, abolishes the stimulation of mannose trimming and greatly decreases the stimulation of ERAD by EDEM3. These results show that EDEM3 has alpha1,2-mannosidase activity in vivo, suggesting that the mechanism whereby EDEM3 accelerates glycoprotein ERAD is different from that of EDEM.


Asunto(s)
Retículo Endoplásmico/fisiología , Glicoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio , Clonación Molecular , Etiquetas de Secuencia Expresada , Manosa/metabolismo , Ratones , Datos de Secuencia Molecular , Solubilidad , alfa-Manosidasa/metabolismo
8.
Mol Cell Biol ; 24(7): 2767-78, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15024066

RESUMEN

In the past decade, traditional yeast two-hybrid techniques have identified a plethora of interactions among soluble proteins operating within diverse cellular pathways. The discovery of associations between membrane proteins by genetic approaches, on the other hand, is less well established due to technical limitations. Recently, a split-ubiquitin system was developed to overcome this barrier, but so far, this system has been limited to the analysis of known membrane protein interactions. Here, we constructed unique split-ubiquitin-linked cDNA libraries and provide details for implementing this system to screen for binding partners of a bait protein, in this case BAP31. BAP31 is a resident integral protein of the endoplasmic reticulum, where it operates as a chaperone or cargo receptor and regulator of apoptosis. Here we describe a novel human member of the protein tyrosine phosphatase-like B (PTPLB) family, an integral protein of the endoplasmic reticulum membrane with four membrane-spanning alpha helices, as a BAP31-interacting protein. PTPLB turns over rapidly through degradation by the proteasome system. Comparisons of mouse cells with a deletion of Bap31 or reconstituted with human BAP31 indicate that BAP31 is required to maintain PTPLB, consistent with a chaperone or quality control function for BAP31 in the endoplasmic reticulum membrane.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Ubiquitina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células COS , Cisteína Endopeptidasas/metabolismo , Biblioteca de Genes , Humanos , Hidroliasas , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Complejos Multienzimáticos/metabolismo , Complejo de la Endopetidasa Proteasomal , Unión Proteica , Proteínas Tirosina Fosfatasas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Técnicas del Sistema de Dos Híbridos
9.
J Biol Chem ; 279(17): 17921-31, 2004 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-14752117

RESUMEN

Kre2p/Mnt1p is a Golgi alpha1,2-mannosyltransferase involved in the biosynthesis of Saccharomyces cerevisiae cell wall glycoproteins. The protein belongs to glycosyltransferase family 15, a member of which has been implicated in virulence of Candida albicans. We present the 2.0 A crystal structures of the catalytic domain of Kre2p/Mnt1p and its binary and ternary complexes with GDP/Mn(2+) and GDP/Mn(2+)/acceptor methyl-alpha-mannoside. The protein has a mixed alpha/beta fold similar to the glycosyltransferase-A (GT-A) fold. Although the GDP-mannose donor was used in the crystallization experiments and the GDP moiety is bound tightly to the active site, the mannose is not visible in the electron density. The manganese is coordinated by a modified DXD motif (EPD), with only the first glutamate involved in a direct interaction. The position of the donor mannose was modeled using the binary and ternary complexes of other GT-A enzymes. The C1" of the modeled donor mannose is within hydrogen-bonding distance of both the hydroxyl of Tyr(220) and the O2 of the acceptor mannose. The O2 of the acceptor mannose is also within hydrogen bond distance of the hydroxyl of Tyr(220). The structures, modeling, site-directed mutagenesis, and kinetic analysis suggest two possible catalytic mechanisms. Either a double-displacement mechanism with the hydroxyl of Tyr(220) as the potential nucleophile or alternatively, an S(N)i-like mechanism with Tyr(220) positioning the substrates for catalysis. The importance of Tyr(220) in both mechanisms is highlighted by a 3000-fold reduction in k(cat) in the Y220F mutant.


Asunto(s)
Manosiltransferasas/química , Glicoproteínas de Membrana/biosíntesis , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Catálisis , Dominio Catalítico , Pared Celular/metabolismo , Dicroismo Circular , Cristalografía por Rayos X , Electrones , Glicoproteínas/metabolismo , Guanosina Difosfato/química , Enlace de Hidrógeno , Cinética , Manosa/química , Modelos Químicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Oxígeno/química , Pichia/metabolismo , Plásmidos/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , Tirosina/química
10.
J Biol Chem ; 278(28): 26287-94, 2003 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12736254

RESUMEN

Misfolded glycoproteins synthesized in the endoplasmic reticulum (ER) are degraded by cytoplasmic proteasomes, a mechanism known as ERAD (ER-associated degradation). In the present study, we demonstrate that ERAD of the misfolded genetic variant-null Hong Kong alpha1-antitrypsin is enhanced by overexpression of the ER processing alpha1,2-mannosidase (ER ManI) in HEK 293 cells, indicating the importance of ER ManI in glycoprotein quality control. We showed previously that EDEM, an enzymatically inactive mannosidase homolog, interacts with misfolded alpha1-antitrypsin and accelerates its degradation (Hosokawa, N., Wada, I., Hasegawa, K., Yorihuzi, T., Tremblay, L. O., Herscovics, A., and Nagata, K. (2001) EMBO Rep. 2, 415-422). Herein we demonstrate a combined effect of ER ManI and EDEM on ERAD of misfolded alpha1-antitrypsin. We also show that misfolded alpha1-antitrypsin NHK contains labeled Glc1Man9GlcNAc and Man5-9GlcNAc released by endo-beta-N-acetylglucosaminidase H in pulse-chase experiments with [2-3H]mannose. Overexpression of ER ManI greatly increases the formation of Man8GlcNAc, induces the formation of Glc1Man8GlcNAc and increases trimming to Man5-7GlcNAc. We propose a model whereby the misfolded glycoprotein interacts with ER ManI and with EDEM, before being recognized by downstream ERAD components. This detailed characterization of oligosaccharides associated with a misfolded glycoprotein raises the possibility that the carbohydrate recognition determinant triggering ERAD may not be restricted to Man8GlcNAc2 isomer B as previous studies have suggested.


Asunto(s)
Acetilcisteína/análogos & derivados , Retículo Endoplásmico/metabolismo , Manosidasas/química , alfa 1-Antitripsina/química , Acetilcisteína/química , Alcaloides/farmacología , Western Blotting , Línea Celular , Retículo Endoplásmico/enzimología , Glicoproteínas/química , Humanos , Oligonucleótidos/química , Oligosacáridos/química , Plásmidos/metabolismo , Pruebas de Precipitina , Unión Proteica , Pliegue de Proteína , Factores de Tiempo , Transfección
12.
J Biol Chem ; 277(7): 5620-30, 2002 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-11714724

RESUMEN

Class I alpha1,2-mannosidases (glycosylhydrolase family 47) are key enzymes in the maturation of N-glycans. This protein family includes two distinct enzymatically active subgroups. Subgroup 1 includes the yeast and human endoplasmic reticulum (ER) alpha1,2-mannosidases that primarily trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomer B whereas subgroup 2 includes mammalian Golgi alpha1,2-mannosidases IA, IB, and IC that trim Man(9)GlcNAc(2) to Man(5)GlcNAc(2) via Man(8)GlcNAc(2) isomers A and C. The structure of the catalytic domain of the subgroup 2 alpha1,2-mannosidase from Penicillium citrinum has been determined by molecular replacement at 2.2-A resolution. The fungal alpha1,2-mannosidase is an (alphaalpha)(7)-helix barrel, very similar to the subgroup 1 yeast (Vallée, F., Lipari, F., Yip, P., Sleno, B., Herscovics, A., and Howell, P. L. (2000) EMBO J. 19, 581-588) and human (Vallée, F., Karaveg, K., Herscovics, A., Moremen, K. W., and Howell, P. L. (2000) J. Biol. Chem. 275, 41287-41298) ER enzymes. The location of the conserved acidic residues of the catalytic site and the binding of the inhibitors, kifunensine and 1-deoxymannojirimycin, to the essential calcium ion are conserved in the fungal enzyme. However, there are major structural differences in the oligosaccharide binding site between the two alpha1,2-mannosidase subgroups. In the subgroup 1 enzymes, an arginine residue plays a critical role in stabilizing the oligosaccharide substrate. In the fungal alpha1,2-mannosidase this arginine is replaced by glycine. This replacement and other sequence variations result in a more spacious carbohydrate binding site. Modeling studies of interactions between the yeast, human and fungal enzymes with different Man(8)GlcNAc(2) isomers indicate that there is a greater degree of freedom to bind the oligosaccharide in the active site of the fungal enzyme than in the yeast and human ER alpha1,2-mannosidases.


Asunto(s)
Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Manosidasas/química , Oligosacáridos/química , Penicillium/enzimología , 1-Desoxinojirimicina/farmacología , Alcaloides/farmacología , Secuencia de Aminoácidos , Sitios de Unión , Calcio/metabolismo , Dominio Catalítico , Disulfuros , Inhibidores Enzimáticos/farmacología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Oligosacáridos/metabolismo , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Estereoisomerismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA