Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 77(4): 839-49, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16596584

RESUMEN

We studied the mechanical behavior of membranes of calf pericardium, similar to those employed in prosthetic valve leaflets, when subjected to tensile fatigue. The objective was to assess its durability, as a fundamental property of cardiac bioprosthesis, and analyze the energy consumption. For this purpose, the authors built a hydraulic simulator to subject a spherical valve leaflet made of calf pericardium to cyclic stress mimicking cardiac function. A total of 522 assays were performed in 40 samples, subjected to cyclic pressures greater than 6 atm, and 482 subjected to pressures ranging between 2 and 6 atm. The mathematical expression that establishes the relationship between the pressure exerted and the frequency was obtained. If we assume that the function is continuous, this equation provides the range of fatigue tolerated for a given number of cycles. Using the optimal values (the five highest values per series), the expression was found to be y = 9.95x(-0 1214) (R(2) = 0.955), where x represents the frequency in cycles per second and y the pressure in atmospheres. In addition, we established the mathematical relationship between the energy consumed and the frequency, which was a function of the pressure exerted, regardless of the region or zone from which the samples had been obtained. The methods of manual and morphology-based selection employed produced widely dispersed results. When a mechanical criterion was included, the similarity in the energy consumed during fatigue testing markedly improved the correlation, with a coefficient of determination between paired samples of R(2) = 0.7477. A mechanical criterion, such as energy consumption, can help to improve sample selection and produce more consistent results. Finally, we obtained the mathematical expression that relates the energy consumed to the pressure exerted and the number of cycles per second to which the valve leaflet was subjected. This procedure enables us to establish the limit to the energy that a biomaterial can consume over a period of time during which it is subjected to a working pressure and, thus, calculate more precisely its durability.


Asunto(s)
Bioprótesis , Metabolismo Energético/fisiología , Prótesis Valvulares Cardíacas , Pericardio/fisiología , Animales , Bovinos
2.
J Biomater Appl ; 19(3): 215-36, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15613381

RESUMEN

The valve leaflets of cardiac bioprostheses are secured and shaped by sutures which, given their high degree of resistance and poor elasticity, have been implicated in the generation of stresses within the leaflets, contributing to the failure of the bioprostheses. Bioadhesives are bonding materials that have begun to be utilized in surgery, although there is a lack of experience in their use with inert tissues or bioprostheses. Tensile testing is performed until rupture in samples of calf pericardium, a biomaterial employed in the manufacture of bioprosthetic heart valve leaflets. One hundred and thirty-two trials are carried out in three types of samples: intact or control tissue (n = 12); samples transected and glued in an overlapping manner with a cyanoacrylate (n = 60); and samples transected, sewn with a commercially available suture material and reinforced at the suture holes with the same cyanoacrylate (n = 60). Seven days after their preparation, 12 samples from each group, including the controls, are subjected to tensile testing until rupture and the findings are compared. In the stability study, groups of 12 each of the remaining 48 glued and 48 sutured and glued samples underwent tensile testing until rupture on days 30, 60, 90, and 120, after their preparation. The results show that bonding with the adhesive provided a resistance ranging between 1.04 and 1.87 kg, probably insufficient for use in valve leaflets, but also afforded a high degree of elasticity. After 120 days, both the glued and the sutured and glued series show excellent elastic behavior, with no rigidity or hardening of the pericardium. These samples present reversible elongation, or strain, when they surpass their elastic limit at rupture. This finding may be due to a load concentration that is damaging to the pericardium, to the behavior of the tissue as an amorphous material, or perhaps to both circumstances. These results need to be confirmed in future studies as they may be of value in the design and manufacture of cardiac bioprostheses.


Asunto(s)
Materiales Biocompatibles/química , Implantación de Prótesis de Válvulas Cardíacas/métodos , Pericardio/fisiopatología , Pericardio/cirugía , Técnicas de Sutura , Suturas , Adhesivos Tisulares/química , Animales , Bioprótesis , Bovinos , Cianoacrilatos/análisis , Cianoacrilatos/química , Elasticidad , Prótesis Valvulares Cardíacas , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Técnicas In Vitro , Ensayo de Materiales/métodos , Pericardio/química , Estrés Mecánico , Resistencia a la Tracción , Adhesivos Tisulares/análisis
3.
J Mater Sci Mater Med ; 14(5): 411-7, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-15348444

RESUMEN

Careful selection of the biological tissue to be used in cardiac bioprostheses and a thorough knowledge of its mechanical behavior, facilitating both the prediction of this behavior and the interactions between the tissue and the other materials employed, is the best approach to designing a durable implant. For this purpose, a study involving uniaxial tensile testing of calf pericardium was carried out. Two sets of three contiguous strips of tissue were obtained from each pericardial membrane, to perform a total of 144 trials. Two samples were sewn with one of four commercially available suture materials: Gore-Tex, nylon, Prolene and silk. In each set of three samples, the center strip remained intact and unsutured to serve as a control, while the left-hand strip was sutured at a 45 degrees angle with respect to the longitudinal axis and the right-hand strip was sewn at a 90 degrees angle. All the samples were tested until rupture. The results demonstrated a significant loss of mean load (p<0.01) in the sutured samples at rupture. The angle of the suture had no influence on these results, although the stress/strain curves showed that, as the tensile stress increased, the mechanical behaviors were less uniform. The rupture of the collagen fibers could explain this phenomenon. The pericardium sutured with Gore-Tex presented a greater strain, or deformation (elongation), at lower levels of stress, regardless of the angle of the suture. The tissue selection criteria, based on the use of paired samples, enabled a correct prediction of the mechanical behavior of the tissue, with excellent correlation coefficients (>0.98) and a high degree of homogeneity in the results.

4.
J Biomed Mater Res ; 62(1): 73-81, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12124788

RESUMEN

The mechanical behavior of sutured ostrich pericardium was studied by uniaxial tensile testing. One hundred forty-four tissue specimens were assessed: 96 sutured samples (48 in which a centrally located suture was placed at an angle of 90 degrees with respect to the longitudinal axis, whereas in the remaining 48, a centrally located suture was placed at a 45 degrees angle to the longitudinal axis, in sets of 12 samples each, sewn with sutures made of Gore-Tex, nylon, Prolene, or silk), and 48 unsutured controls. Each group of 24 samples sewn at one angle or the other with the different suture materials was assayed together with a corresponding control group of 12 unsutured samples. The mean tensile strengths in the unsutured controls ranged between 30.16 MPa and 43.42 MPa, whereas those of the sutured sets ranged from 14.68 MPa to 21.91 MPa. The latter presented a statistically significant loss of resistance (p < 0.01) when compared with the unsutured tissue samples. The angle of the suture with respect to the longitudinal axis influenced the degree of shear stress produced by the suture, as well as the behavior of the different suture materials used. The set of samples sewn with Prolene appeared to be that most sensitive to changes in the angle of the suture, whereas tissue sewn at a 45 degrees angle with Gore-Tex presented lower shear stress values in comparison with samples in which the other three materials were used. A method of tissue selection based on morphological and mechanical criteria was used to ensure the homogeneity of the results in such a way that the coefficients of determination (R2) for the stress/strain curve fitting equation ranged between 0.888 and 0.995. This excellent fit made it possible, applying regression analysis, to predict the mechanical behavior of a specimen by determining that of a contiguous tissue sample. Thus, it should be possible, at least theoretically, to characterize the behavior of a specific region or zone of the biomaterial. In conclusion, ostrich pericardium exhibits strong resistance to rupture, even when sutured. The selection method used ensures the homogeneity of the samples and, thus, of the results. The angle of the suture with respect to the longitudinal axis, where the load is centered, determines the shear stress produced by the suture and the mechanical behavior of each suture material.


Asunto(s)
Pericardio/lesiones , Suturas/efectos adversos , Animales , Materiales Biocompatibles , Fenómenos Biomecánicos , Modelos Lineales , Polipropilenos , Politetrafluoroetileno , Rotura , Estrés Mecánico , Struthioniformes , Técnicas de Sutura , Suturas/normas , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA