RESUMEN
Designing effective drug nanocarriers that are easy to synthesize, robust, and nontoxic is a significant challenge in nanomedicine. Polyamine-multivalent molecule nanocomplexes are promising drug carriers due to their simple and all-aqueous manufacturing process. However, these systems can present issues of colloidal instability over time and cellular toxicity due to the cationic polymer. In this study, we finely modulate the formation parameters of poly(allylamine-tripolyphosphate) complexes to jointly optimize the robustness and safety. Polyallylamine was ionically assembled with tripolyphosphate anions to form liquid-like nanocomplexes with a size of around 200 nm and a zeta potential of -30 mV. We found that nanocomplexes exhibit tremendous long-term stability (9 months of storage) in colloidal dispersion and that they are suitable as protein-loading agents. Moreover, the formation of nanocomplexes induced by tripolyphosphate anions produces a switch-off in the toxicity of the system by altering the overall charge from positive to negative. In addition, we demonstrate that nanocomplexes can be internalized by bone-marrow-derived macrophage cells. Altogether, these nanocomplexes have attractive and promising properties as delivery nanoplatforms for potential therapies based on the immune system activation.
Asunto(s)
Alilamina , Polifosfatos , Portadores de Fármacos , PolímerosRESUMEN
This work reports the phase behavior and electrochemical properties of liquid coacervates made of ferricyanide and poly(ethylenimine). In contrast to the typical polyanion/polycation pairs used in liquid coacervates, the ferricyanide/poly(ethylenimine) system is highly asymmetric because poly(ethylenimine) has approximately 170 charges per molecule, while ferricyanide has only 3. Two types of phase diagrams were measured and fitted with a theoretical model. In the first type of diagram, the stability of the coacervate was studied in the plane given by the concentration of poly(ethylenimine) versus the concentration of ferricyanide for a fixed concentration of added monovalent salt (NaCl). The second type of diagram involved the plane given by the concentration of poly(ethylenimine) vs the concentration of the added monovalent salt for a fixed poly(ethyleneimine)/ferricyanide ratio. Interestingly, these phase diagrams displayed qualitative similarities to those of symmetric polyanion/polycation systems, suggesting that coacervates formed by a polyelectrolyte and a small multivalent ion can be treated as a specific case of polyelectrolyte coacervate. The characterization of the electrochemical properties of the coacervate revealed that the addition of monovalent salt greatly enhances charge transport, presumably by breaking ion pairs between ferricyanide and poly(ethylenimine). This finding highlights the significant influence of added salt on the transport properties of coacervates. This study provides the first comprehensive characterization of the phase behavior and transport properties of asymmetric coacervates and places these results within the broader context of the better-known symmetric polyelectrolyte coacervates.
RESUMEN
The complexation of polyelectrolytes with other oppositely charged structures gives rise to a great variety of functional materials with potential applications in a wide spectrum of technological fields. Depending on the assembly conditions, polyelectrolyte complexes can acquire different macroscopic configurations such as dense precipitates, nanosized colloids and liquid coacervates. In the past 50 years, much progress has been achieved to understand the principles behind the phase separation induced by the interaction of two oppositely charged polyelectrolytes in aqueous solutions, especially for symmetric systems (systems in which both polyions have similar molecular weight and concentration). However, in recent years, the complexation of polyelectrolytes with alternative building blocks such as small charged molecules (multivalent inorganic species, oligopeptides, and oligoamines, among others) has gained attention in different areas. In this review, we discuss the physicochemical characteristics of the complexes formed by polyelectrolytes and multivalent small molecules, putting a special emphasis on their similarities with the well-known polycation-polyanion complexes. In addition, we analyze the potential of these complexes to act as versatile functional platforms in various technological fields, such as biomedicine and advanced materials engineering.
RESUMEN
Polyamine-salt aggregates have become promising soft materials in nanotechnology due to their easy preparation process and pH-responsiveness. Here, we report the use of hexacyanoferrate(ii) and hexacyanoferrate(iii) as electroactive crosslinking agents for the formation of nanometer-sized redox-active polyamine-redox-salt aggregates (rPSA) in bulk suspension. This nanoplatform can be selectively assembled or disassembled under different stimuli such as redox environment, pH and ionic strength. By changing the charge of the building blocks, external triggers allow switching the system between two phase states: aggregate-free solution or colloidal rPSA dispersion. The stimuli-activated modulation of the assembly/disassembly processes opens a path to exploit rPSA in technologies based on smart nanomaterials.
RESUMEN
Multistage delivery systems with size reduction capacity have been proposed as a powerful strategy for improving tissue drug penetration. Here we developed a simple and fast supramolecular approach to construct size-shrinkable polyamine-salt aggregates by ionic cross-linking of biodegradable poly-L-lysine dendrigraft with tripolyphosphate anion. The use of a peptide dendrimer as a nanobuilding block (â¼7 nm in diameter) allows the formation of supraparticles (SPs) with well-defined dimensions (â¼200 nm in diameter), narrow size distribution and great capacity to encapsulate different molecules, including chemotherapeutic agents as Curcumin and Doxorubicin. When exposed to slightly acidic environments, the crosslinked matrix is instantaneously disassembled to free dendrimer units. Subsequently, model cargo molecules entrapped in the dendrimer architecture can be released by the action of trypsin enzyme through peptide biodegradation. Therefore, these SPs with proved sequential pH and enzyme-responsiveness could be exploited as nanocarriers in multistage drug delivery systems.
Asunto(s)
Curcumina/química , Dendrímeros/química , Doxorrubicina/química , Péptidos/química , Tripsina/química , Curcumina/metabolismo , Dendrímeros/síntesis química , Dendrímeros/metabolismo , Doxorrubicina/metabolismo , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Concentración de Iones de Hidrógeno , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Estructura Molecular , Tamaño de la Partícula , Péptidos/síntesis química , Péptidos/metabolismo , Poliaminas/química , Poliaminas/metabolismo , Polilisina/química , Polilisina/metabolismo , Propiedades de Superficie , Tripsina/metabolismoRESUMEN
Polyamine-salt aggregates (PSA) are biomimetic soft materials that have attracted great attention due to their straightforward fabrication methods, high drug-loading efficiencies, and attractive properties for pH-triggered release. Herein, a simple and fast multicomponent self-assembly process was used to construct cross-linked poly(allylamine hydrochloride)/phosphate PSAs (hydrodynamic diameter of 360â nm) containing glucose oxidase enzyme, as a glucose-responsive element, and human recombinant insulin, as a therapeutic agent for the treatment of diabetes mellitus (GI-PSA). The addition of increasing glucose concentrations promotes the release of insulin due to the disassembly of the GI-PSAs triggered by the catalytic in situ formation of gluconic acid. Under normoglycemia, the GI-PSA integrity remained intact for at least 24â h, whereas hyperglycemic conditions resulted in 100 % cargo release after 4â h of glucose addition. This entirely supramolecular strategy presents great potential for the construction of smart glucose-responsive delivery nanocarriers.
Asunto(s)
Sistemas de Liberación de Medicamentos , Glucosa/química , Insulina/administración & dosificación , Insulina/química , Nanocápsulas/química , Poliaminas/química , Reactivos de Enlaces Cruzados/química , Diabetes Mellitus/tratamiento farmacológico , Gluconatos/química , Humanos , Insulina/farmacologíaRESUMEN
Responsive nanomaterials have emerged as key components in materials sciences. Herein, we report the one-step preparation of multi-stimuli responsive polyamine-salt aggregates (PSA) by ionically crosslinking polyethylenimine with potassium ferrioxalate (FeOx). The unique properties of FeOx enables a novel class of soft nanomaterial that disassembles by exposure to light, reducing environments and temperature.
RESUMEN
Ionically crosslinked poly(allylamine)/phosphate (PAH/Pi) colloids consist of self-assembled nanostructures stabilized by supramolecular interactions. Under physiological conditions, these interactions should be present at high ionic strength and only in a narrow pH window to be effective as drug delivery agents. In this work we study the effect of the pH and ionic strength in the chemical behaviour of inorganic phosphate (Pi), poly(allylamine hydrochloride) (PAH) and their mixture in aqueous solution (PAH-Pi). By combination of experimental measurements and a theoretical model, we demonstrate that the driving force that leads to the formation of colloids is the electrostatic pairing between the positively charged amino groups in PAH and negatively charged HPO42- ions. Increasing the ionic strength of the system by addition of KCl weakens the PAH-Pi interactions and narrows the pH stability window from 4 to 1.8â pH units. In addition, a fully reversible system was obtained in which the colloids assemble and disassemble by changing the pH between 6.8 and 7.1 at high ionic strength, making them suitable for use as pH-responsive nanocarriers.
RESUMEN
Metal-nanoparticle-mediated electron transfer (ET) across an insulator thin film containing nanoparticles with attached redox centers was studied using electrochemical impedance spectroscopy. Specifically, a gold spherical microelectrode was modified with 16-amino-1-hexa-decanethiol, creating an insulator film. This was followed by the electrostatic adsorption of gold nanoparticles and the covalent attachment of Os2+ redox centers. A variation of the Creager-Wooster method was developed to get quantitative information regarding the ET kinetics of the system. The experimental data obtained from a single measurement was fitted with a model that decouples two or more ET processes with different time constants and considers a Gaussian distribution of tunneling distances. Two parallel ET mechanisms were observed: one in which the electrons flow by tunneling between the surface and the redox couples with a low kET0 = 1.3 s-1 and a second one in which an enhancement of the electron transfer is produced due to the presence of the gold nanoparticles with a kET0 = 7 × 104 s-1. In this study, we demonstrate that the gold nanoparticle electron transfer enhancement is present only in the local environment of the nanoparticle, showing that the nanoscale architecture is crucial to maximize the enhancement effect.
RESUMEN
Supramolecular self-assembly of molecular building blocks represents a powerful "nanoarchitectonic" tool to create new functional materials with molecular-level feature control. Here, we propose a simple method to create tunable phosphate/polyamine-based films on surfaces by successive assembly of poly(allylamine hydrochloride) (PAH)/phosphate anions (Pi) supramolecular networks. The growth of the films showed a great linearity and regularity with the number of steps. The coating thickness can be easily modulated by the bulk concentration of PAH and the deposition cycles. The PAH/Pi networks showed chemical stability between pH 4 and 10. The transport properties of the surface assemblies formed from different deposition cycles were evaluated electrochemically by using different redox probes in aqueous solution. The results revealed that either highly permeable films or efficient anion transport selectivity can be created by simply varying the concentration of PAH. This experimental evidence indicates that this new strategy of supramolecular self-assembly can be useful for the rational construction of single polyelectrolyte nanoarchitectures with multiple functionalities.
RESUMEN
The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and the LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.
RESUMEN
Ex situ atomic force microscopy (AFM) has been used to study the morphology of oxygen reduction products in the LiPF6-dimethyl sulfoxide (DMSO) electrolyte, i.e. Li2O2 on a highly oriented pyrolytic graphite (HOPG) surface. Both cyclic voltammetry and chronoamperometry have shown that at low cathodic polarization the initial deposits decorate the edge steps of HOPG. At higher overpotentials a massive deposit covers the terraces. Upon charging the battery cathode Li2O2 oxidation and dissolution do not take place until high overpotentials are reached at which solvent decomposition has been demonstrated by in situ FTIR studies.