Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Insect Sci ; 4: 1324044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715767

RESUMEN

Alfalfa (Medicago sativa L.) is an economically important commodity in the Intermountain Western United States. A major concern for alfalfa producers in this region is the alfalfa weevil (Hypera postica Gyllenhal). Insecticide resistance development coupled with regulatory changes in pesticide use has resulted in renewed interest by producers in non-chemical control methods such as cultural control. One such cultural control method is early harvest, which consists of producers timing their harvests early in the season to decrease alfalfa weevil damage. This method is thought to be effective by exposing weevil larvae to adverse conditions before significant damage occurs. Still, early harvest can be difficult to employ because recommendations are often vague. To better understand how early harvest impacts both alfalfa weevils and their natural enemies and how producers are using this method across the Intermountain Western United States, we conducted a study in alfalfa production fields in Colorado, Montana, and Wyoming over three growing seasons. We determined that the timing of the initial alfalfa harvest spanned more than 1 month across fields, and alfalfa plant stage at harvest ranged from late vegetative to early bloom. Harvest was more impactful on reducing alfalfa weevil densities the earlier it was implemented. Removing windrows in a timely manner is likely useful to further decrease alfalfa weevil densities. Harvest timing was not associated with parasitism rates of alfalfa weevil, but higher parasitism rates were associated with lower post-harvest alfalfa weevil densities. This work has increased our understanding of early harvest in an on-farm setting and to improve recommendations for producers across the Intermountain Western United States.

2.
J Econ Entomol ; 115(3): 909-913, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35482614

RESUMEN

Various strategies incorporate floral resources into agricultural landscapes to support beneficial insects. Specialty cut flower production offers a rarely explored approach to offer floral resources while yielding a marketable product for growers. We characterized insect visitation to six species of specialty cut flowers. Due to Wyoming's growing conditions, the flowers were grown in high tunnels, thus offering insight into insect abundance in this unique semi-controlled environment. The flower species tested were Calendula officinalis, Celosia argentea, Daucus carota, Helichrysum bracteatum, Matthiola incana, and a Zinnia elegans-Zinnia hybrida mixture. At least four species were in bloom from early June through late September. The flowers attracted diverse pollinator groups including Diptera, Hymenoptera, Coleoptera, and Lepidoptera. Bees most often visited Ca. officinalis, H. bracteatum, and Celosia spicata whereas flies most often visited D. carota. Bombus were the most oft-collected bees from the flowers and were found on all six cut flower species. Wasp abundance varied little across the cut flowers, but wasp community composition was distinct. The highest diversity of wasp families was collected from the Zinnia mixture (seven families) in contrast to less diverse collections from Ce. spicata (two families). The most abundant wasp families collected were Crabronidae and Sphecidae. Our experiment documented that ornamental cut flower species attract pollinator insects into high tunnel environments. All cut flower species tested were visited by multiple types of beneficial insects. Planting a mixture of specialty cut flowers can support insect diversity while also diversifying on-farm agricultural products through sale of cut flower stems.


Asunto(s)
Dípteros , Himenópteros , Animales , Abejas , Flores , Insectos , Polinización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA