Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299743

RESUMEN

Speckle Plethysmography (SPG) and Photoplethysmography (PPG) are different biophotonics technologies that allow for measurement of haemodynamics. As the difference between SPG and PPG under low perfusion conditions is not fully understood, a Cold Pressor Test (CPT-60 s full hand immersion in ice water), was used to modulate blood pressure and peripheral circulation. A custom-built setup simultaneously derived SPG and PPG from the same video streams at two wavelengths (639 nm and 850 nm). SPG and PPG were measured at the right index finger location before and during the CPT using finger Arterial Pressure (fiAP) as a reference. The effect of the CPT on the Alternating Component amplitude (AC) and Signal-to-Noise Ratio (SNR) of dual-wavelength SPG and PPG signals was analysed across participants. Furthermore, waveform differences between SPG, PPG, and fiAP based on frequency harmonic ratios were analysed for each subject (n = 10). Both PPG and SPG at 850 nm show a significant reduction during the CPT in both AC and SNR. However, SPG showed significantly higher and more stable SNR than PPG in both study phases. Harmonic ratios were found substantially higher in SPG than PPG. Therefore, in low perfusion conditions, SPG seems to offer a more robust pulse wave monitoring with higher harmonic ratios than PPG.


Asunto(s)
Presión Arterial , Fotopletismografía , Humanos , Dedos , Presión Sanguínea/fisiología , Mano
2.
Bioengineering (Basel) ; 10(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36671673

RESUMEN

OBJECTIVE: The goal was to compare Speckle plethysmography (SPG) and Photoplethysmography (PPG) with non-invasive finger Arterial Pressure (fiAP) regarding Pulse Wave Morphology (PWM) and Pulse Arrival Time (PAT). METHODS: Healthy volunteers (n = 8) were connected to a Non-Invasive Blood Pressure (NIBP) monitor providing fiAP pulse wave and PPG from a clinical transmission-mode SpO2 finger clip. Biopac recorded 3-lead ECG. A camera placed at a 25 cm distance recorded a video stream (100 fps) of a finger illuminated by a laser diode at 639 nm. A chest belt (Polar) monitored respiration. All signals were recorded simultaneously during episodes of spontaneous breathing and paced breathing. ANALYSIS: Post-processing was performed in Matlab to obtain SPG and analyze the SPG, PPG and fiAP mean absolute deviations (MADs) on PWM, plus PAT modulation. RESULTS: Across 2599 beats, the average fiAP MAD with PPG was 0.17 (0-1) and with SPG 0.09 (0-1). PAT derived from ECG-fiAP correlated as follows: 0.65 for ECG-SPG and 0.67 for ECG-PPG. CONCLUSION: Compared to the clinical NIBP monitor fiAP reference, PWM from an experimental camera-derived non-contact reflective-mode SPG setup resembled fiAP significantly better than PPG from a simultaneously recorded clinical transmission-mode finger clip. For PAT values, no significant difference was found between ECG-SPG and ECG-PPG compared to ECG-fiAP.

3.
Sensors (Basel) ; 22(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36015822

RESUMEN

Background: Although both speckle plethysmography (SPG) and photoplethysmography (PPG) examine pulsatile changes in the vasculature using opto-electronics, PPG has a long history, whereas SPG is relatively new and less explored. The aim of this study was to compare the effects of integration time and light-source coherence on signal quality and waveform morphology for reflective and transmissive rSPG and rPPG. Methods: (A) Using time-domain multiplexing, we illuminated 10 human index fingers with pulsed lasers versus LEDs (both at 639 and 850 nm), in transmissive versus reflective mode. A synchronized camera (Basler acA2000-340 km, 25 cm distance, 200 fps) captured and demultiplexed four video channels (50 fps/channel) in four stages defined by illumination mode. From all video channels, we derived rPPG and rSPG, and applied a signal quality index (SQI, scale: Good > 0.95; Medium 0.95−0.85; Low 0.85−0.8; Negligible < 0.8); (B) For transmission videos only, we additionally calculated the intensity threshold area (ITA), as the area of the imaging exceeding a certain intensity value and used linear regression analysis to understand unexpected similarities between rPPG and rSPG. Results: All mean SQI-values. Reflective mode: Laser-rSPG > 0.965, LED-rSPG < 0.78, rPPG < 0.845. Transmissive mode: 0.853−0.989 for rSPG and rPPG at all illumination settings. Coherent mode: Reflective rSPG > 0.951, reflective rPPG < 0.740, transmissive rSPG and rPPG 0.990−0.898. Incoherent mode: Reflective all <0.798 and transmissive all 0.92−0.987. Linear regressions revealed similar R2 values of rPPG with rSPG (R2 = 0.99) and ITA (R2 = 0.98); Discussion: Laser-rSPG and LED-rPPG produced different waveforms in reflection, but not in transmission. We created the concept of ITA to investigate this behavior. Conclusions: Reflective Laser-SPG truly originated from coherence. Transmissive Laser-rSPG showed a loss of speckles, accompanied by waveform changes towards rPPG. Diffuse spatial intensity modulation polluted spatial-mode SPG.


Asunto(s)
Rayos Láser , Fotopletismografía , Humanos , Fotopletismografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA