Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 663, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38909050

RESUMEN

The development of platforms for distributed analytics has been driven by a growing need to comply with various governance-related or legal constraints. Among these platforms, the so-called Personal Health Train (PHT) is one representative that has emerged over the recent years. However, in projects that require data from sites featuring different PHT infrastructures, institutions are facing challenges emerging from the combination of multiple PHT ecosystems, including data governance, regulatory compliance, or the modification of existing workflows. In these scenarios, the interoperability of the platforms is preferable. In this work, we introduce a conceptual framework for the technical interoperability of the PHT covering five essential requirements: Data integration, unified station identifiers, mutual metadata, aligned security protocols, and business logic. We evaluated our concept in a feasibility study that involves two distinct PHT infrastructures: PHT-meDIC and PADME. We analyzed data on leukodystrophy from patients in the University Hospitals of Tübingen and Leipzig, and patients with differential diagnoses at the University Hospital Aachen. The results of our study demonstrate the technical interoperability between these two PHT infrastructures, allowing researchers to perform analyses across the participating institutions. Our method is more space-efficient compared to the multi-homing strategy, and it shows only a minimal time overhead.


Asunto(s)
Interoperabilidad de la Información en Salud , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Humanos , Análisis de Datos
2.
J Pers Med ; 12(11)2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36579493

RESUMEN

Several risk scores were developed during the COVID-19 pandemic to identify patients at risk for critical illness as a basic step to personalizing medicine even in pandemic circumstances. However, the generalizability of these scores with regard to different populations, clinical settings, healthcare systems, and new epidemiological circumstances is unknown. The aim of our study was to compare the predictive validity of qSOFA, CRB65, NEWS, COVID-GRAM, and 4C-Mortality score. In a monocentric retrospective cohort, consecutively hospitalized adults with COVID-19 from February 2020 to June 2021 were included; risk scores at admission were calculated. The area under the receiver operating characteristic curve and the area under the precision-recall curve were compared using DeLong's method and a bootstrapping approach. A total of 347 patients were included; 23.6% were admitted to the ICU, and 9.2% died in a hospital. NEWS and 4C-Score performed best for the outcomes ICU admission and in-hospital mortality. The easy-to-use bedside score NEWS has proven to identify patients at risk for critical illness, whereas the more complex COVID-19-specific scores 4C and COVID-GRAM were not superior. Decreasing mortality and ICU-admission rates affected the discriminatory ability of all scores. A further evaluation of risk assessment is needed in view of new and rapidly changing epidemiological evolution.

3.
Nucleic Acids Res ; 47(W1): W605-W609, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31114892

RESUMEN

More and more affordable high-throughput techniques for measuring molecular features of biomedical samples have led to a huge increase in availability and size of different types of multi-omic datasets, containing, for example, genetic or histone modification data. Due to the multi-view characteristic of the data, established approaches for exploratory analysis are not directly applicable. Here we present web-rMKL, a web server that provides an integrative dimensionality reduction with subsequent clustering of samples based on data from multiple inputs. The underlying machine learning method rMKL-LPP performed best for clinical enrichment in a recent benchmark of state-of-the-art multi-view clustering algorithms. The method was introduced for a multi-omic cancer subtype discovery setting, however, it is not limited to this application scenario as exemplified by a presented use case for stem cell differentiation. web-rMKL offers an intuitive interface for uploading data and setting the parameters. rMKL-LPP runs on the back end and the user may receive notifications once the results are available. We also introduce a preprocessing tool for generating kernel matrices from tables containing numerical feature values. This program can be used to generate admissible input if no precomputed kernel matrices are available. The web server is freely available at web-rMKL.org.


Asunto(s)
Aprendizaje Automático , Programas Informáticos , Diferenciación Celular , Análisis por Conglomerados , Metilación de ADN , Perfilación de la Expresión Génica , Genómica , Humanos , Internet , MicroARNs/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Células Madre/citología , Análisis de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA