RESUMEN
Acetaldehyde is a volatile organic compound that can cause damage at the cellular and genomic levels. The monitoring of acetaldehyde gas at low concentrations requires fast-response and low-cost sensors. Herein, we propose the design of an acetaldehyde gas sensor based on a low-cost Microelectromechanical System (MEMS) process. This sensor is formed by a single-clamped piezoelectric multilayer resonator (3000 × 1000 × 52.2 µm) with a simple operating principle and easy signal processing. This resonator uses a zinc oxide piezoelectric layer (1 µm thick) and a sensing film of titanium oxide (1 µm thick). In addition, the resonator uses a support layer of 304 stainless steel (50 µm thick) and two aluminum layers (100 nm thick). Analytical and Finite-Element Method (FEM) models are developed to predict the mechanical behavior of the gas sensor, considering the influence of the different layers of the resonator. The analytical results agree well with respect to the FEM model results. The gas sensor has a first bending frequency of 4722.4 Hz and a sensitivity of 8.22 kHz/g. A minimum detectable concentration of acetaldehyde of 102 ppm can be detected with the proposed sensor. This gas sensor has a linear behavior to detect different acetaldehyde concentrations using the frequency shifts of its multilayer resonator. The gas sensor design offers advantages such as small size, a light weight, and cost-efficient fabrication.
RESUMEN
The electric stimulation (ES) of the cornea is a novel therapeutic approach to the treatment of degenerative visual diseases. Currently, ES is delivered by placing a mono-element electrode on the surface of the cornea that uniformly stimulates the eye along the electrode site. It has been reported that a certain degree of correlation exists between the location of the stimulated retinal area and the position of the electrode. Therefore, in this study, we present the development of a sectioned surface electrode for selective electric stimulation of the human cornea. The proposed device consists of 16 independent microelectrodes, a reference electrode, and 18 contact pads. The microelectrodes have a size of 200 µm × 200 µm, are arranged in a 4 × 4 matrix, and cover a total stimulation area of 16 mm2. The proposed fabrication process, based on surface micromachining technology and flexible electronics, uses only three materials: polyimide, aluminum, and titanium, which allow us to obtain a simplified, ergonomic, and reproducible fabrication process. The fabricated prototype was validated to laboratory level by electrical and electrochemical tests, showing a relatively high electrical conductivity and average impedance from 712 kΩ to 1.4 MΩ at the clinically relevant frequency range (from 11 Hz to 30 Hz). Additionally, the biocompatibility of the electrode prototype was demonstrated by performing in vivo tests and by analyzing the polyimide films using Fourier transform infrared spectroscopy (FTIR). The resulting electrode prototype is robust, mechanically flexible, and biocompatible, with a high potential to be used for selective ES of the cornea.
RESUMEN
In this paper, an alternative strategy for the design of a bidirectional inductive power transfer (IPT) module, intended for the continuous monitoring of cardiac pressure, is presented. This new integrated implantable medical device (IMD) was designed including a precise ventricular pressure sensor, where the available implanting room is restricted to a 1.8 × 1.8 cm2 area. This work considers a robust magnetic coupling between an external reading coil and the implantable module: a three-dimensional inductor and a touch mode capacitive pressure sensor (TMCPS) set. In this approach, the coupling modules were modelled as RCL circuits tuned at a 13.56 MHz frequency. The analytical design was validated by means of Comsol Multiphysics, CoventorWare, and ANSYS HFSS software tools. A power transmission efficiency (PTE) of 94% was achieved through a 3.5 cm-thick biological tissue, based on high magnitudes for the inductance (L) and quality factor (Q) components. A specific absorption rate (SAR) of less than 1.6 W/Kg was attained, which suggests that this IPT system can be implemented in a safe way, according to IEEE C95.1 safety guidelines. The set of inductor and capacitor integrated arrays were designed over a very thin polyimide film, where the 3D coil was 18 mm in diameter and approximately 50% reduced in size, considering any conventional counterpart. Finally, this new approach for the IMD was under development using low-cost thin film manufacturing technologies for flexible electronics. Meanwhile, as an alternative test, this novel system was fabricated using a discrete printed circuit board (PCB) approach, where preliminary electromagnetic characterization demonstrates the viability of this bidirectional IPT design.
Asunto(s)
Electrofisiología/instrumentación , Ventrículos Cardíacos , Presión Ventricular , Tejido Adiposo/patología , Suministros de Energía Eléctrica , Electrónica , Electrofisiología/métodos , Diseño de Equipo , Humanos , Magnetismo/instrumentación , Músculos/patología , Seguridad del Paciente , Prótesis e Implantes , Procesamiento de Señales Asistido por Computador , Piel/patología , Tecnología Inalámbrica/instrumentaciónRESUMEN
This paper reports the novel design of a touch mode capacitive pressure sensor (TMCPS) system with a wireless approach for a full-range continuous monitoring of ventricular pressure. The system consists of two modules: an implantable set and an external reading device. The implantable set, restricted to a 2 × 2 cm² area, consists of a TMCPS array connected with a dual-layer coil, for making a reliable resonant circuit for communication with the external device. The capacitive array is modelled considering the small deflection regime for achieving a dynamic and full 5â»300 mmHg pressure range. In this design, the two inductive-coupled modules are calculated considering proper electromagnetic alignment, based on two planar coils and considering the following: 13.56 MHz frequency to avoid tissue damage and three types of biological tissue as core (skin, fat and muscle). The system was validated with the Comsol Multiphysics and CoventorWare softwares; showing a 90% power transmission efficiency at a 3.5 cm distance between coils. The implantable module includes aluminum- and polyimide-based devices, which allows ergonomic, robust, reproducible, and technologically feasible integrated sensors. In addition, the module shows a simplified and low cost design approach based on PolyMEMS INAOE® technology, featured by low-temperature processing.