RESUMEN
In the Yucatan Peninsula, Mexico, Triatoma dimidiata is the main vector of Chagas disease. This is a native species in the region that principally inhabits sylvatic habitats. Nevertheless, it shows a tolerant behavior to anthropogenic disturbance, with adult bugs frequently infesting human dwellings, principally during the warm and dry season. Yet, whether the temporal variation of abundance is independent of the habitat and how this is related to the infection rate with Trypanosoma cruzi in Yucatan is still poorly understood. The objective of this study was to simultaneously analyze the temporal variations of T. dimidiata abundance and infection with T. cruzi in domestic and sylvatic habitats from two localities of rural Yucatan (Sudzal, 20°52'19â³N, 88°59'20â³W and Teya, 21°02'55â³N, 89°04'25â³W) to help for the further improvement of locally adapted strategies aimed at controlling T. cruzi vector transmission. Using community participation and a combination of different trapping techniques, we collected T. dimidiata bugs during 29 consecutive months within domestic and sylvatic habitats. We then assessed by PCR the infection of the bugs with T. cruzi. Generalized linear models were used to evaluate the effect of climatic variables on the abundance of T. dimidiata and the effect of bug sex, season and habitat on the prevalence of infection with T. cruzi. Overall, 3640 specimens of T. dimidiata were collected. We clearly observed peaks of maximum abundance in both habitats during the warm and dry season and found a negative association of bug abundance with relative humidity. The overall prevalence of infection of the bugs with T. cruzi was 15.2 %. Additionally, bugs collected in domestic habitats displayed a significantly higher prevalence of infection than sylvatic bugs (19.6% vs. 6.1 %, respectively), suggesting an increased risk of T. cruzi transmission related with anthropogenic disturbance. Our study is the first to describe the annual pattern of abundance of T. dimidiata in sylvatic habitats of rural Yucatan and constitutes a contribution to the knowledge of T. dimidiata ecology and of T. cruzi transmission cycle dynamics in the region. In Yucatan, where the use of mosquito nets has shown to be effective to limit human dwelling infestation by T. dimidiata, reinforcing the awareness of local residents about the increased risk of T. cruzi transmission during the warm and dry season when realizing activities in the sylvatic ambient should be, among others, also considered to improve control strategies and limit the risk of vector transmission.
Asunto(s)
Enfermedad de Chagas , Triatoma , Trypanosoma cruzi , Animales , Humanos , México/epidemiología , Enfermedad de Chagas/epidemiología , EcosistemaRESUMEN
BACKGROUND: In the Yucatán Peninsula, Mexico, Triatoma dimidiata is the main vector of Trypanosoma cruzi, the causative agent of Chagas disease. Little effort has been made to identify blood meal sources of T. dimidiata in natural conditions in this region, although this provides key information to disentangle T. cruzi transmission cycles and dynamics and guide the development of more effective control strategies. We identified the blood meals of a large sample of T. dimidiata bugs collected in different ecotopes simultaneously with the assessment of bug infection with T. cruzi, to disentangle the dynamics of T. cruzi transmission in the region. METHODS: A sample of 248 T. dimidiata bugs collected in three rural villages and in the sylvatic habitat surrounding these villages was used. DNA from each bug midgut was extracted and bug infection with T. cruzi was assessed by PCR. For blood meal identification, we used a molecular assay based on cloning and sequencing following PCR amplification with vertebrate universal primers, and allowing the detection of multiple blood meals in a single bug. RESULTS: Overall, 28.7% of the bugs were infected with T. cruzi, with no statistical difference between bugs from the villages or from sylvatic ecotopes. Sixteen vertebrate species including domestic, synanthropic and sylvatic animals, were identified as blood meal sources for T. dimidiata. Human, dog and cow were the three main species identified, in bugs collected in the villages as well as in sylvatic ecotopes. Importantly, dog was highlighted as the main blood meal source after human. Dog was also the most frequently identified animal together with human within single bugs, and tended to be associated with the infection of the bugs. CONCLUSIONS: Dog, human and cow were identified as the main mammals involved in the connection of sylvatic and domestic transmission cycles in the Yucatán Peninsula, Mexico. Dog appeared as the most important animal in the transmission pathway of T. cruzi to humans, but other domestic and synanthropic animals, which most were previously reported as important hosts of T. cruzi in the region, were evidenced and should be taken into account as part of integrated control strategies aimed at disrupting parasite transmission.