Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(9): e20194, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37809432

RESUMEN

The global production of polymer materials has exploded in the last few decades. Their mechanical properties, erosion and corrosion resistance, good performance as insulation materials, and their ease and flexibility of manufacturing have made polymers one of the most widely used materials in the industry and in daily life. Several institutions and governments are beginning to raise serious environmental and ecological concerns with international impact soon, due to the increasing level of polymer production, which does not seem to be slowing down. It is necessary for the scientific community to make efforts in the development and evaluation of new methodologies to enable the inclusion of these types of materials in the circular economy of various production sectors. This is important in order to reduce the ecological impact caused by the current global production level of polymers. One of the most used methods for the recovery of polymeric materials is energy valorization through thermochemical processes. An example of this is thermal gasification using fuels composed of biomass and a mixture of polymeric waste from electrical and electronic equipment (WEEE). Through this thermochemical process, high-energy value synthesis gas, with a high concentration of hydrogen, is obtained on one hand, while waste products in the form of chars, ashes and slag are generated on the other hand. This manuscript presents a detailed study methodology that begins with chemical analysis of the raw material and includes subsequent analysis of mechanical results for the revaluation of these residual inert by-products, using them as partial substitutes in cement clinker to produce building mortars. This described methodology influences directly in the LCC (Life Cycle Costing) of final designed products in plastic and extend material life cycle Plastic materials are here to stay, so the study and optimization of polymer waste recovery processes are vital in achieving the Sustainable Development Goals (SDGs) set by the European Union in terms of efficiency and sustainability. It is also the only possible way to create an environmentally sustainable future world for future generations. After applying the described methodology, the mechanical test results show that the modified mortars exhibit established behaviour during the hardening time and similar strength growth compared to commercial mortars. The maximum mechanical strengths achieved, including compressive and flexural strength, make modified mortars a viable choice for several applications in the civil engineering sector.

2.
Clean Technol Environ Policy ; : 1-29, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37359163

RESUMEN

In the last decade, we have experienced a changing geopolitical context that has caused changes in the energy context. In addition, human activity contributes to global warming or sea level rising, i.e., climate change. A set of action policies have been implemented to continue fighting against this environmental situation (such as the Paris Agreement, the COP27, or the European Green Deal for 2030); therefore, it is necessary to determine whether we are on the right track. It is compulsory to develop predictive models that accurately analyze the current status and the already path undertaken. To this end, this article analyzes the environmental efficiency of the 27 countries of the European Union (excluding the UK) using the so-called data envelopment analysis (DEA). In particular, economic (GDP and GDP per capita), environmental (CO2 and CH4 emissions), electricity production data, the volume of vehicles, and the industrial production rate of the different countries were collected to calculate environmental efficiency. Once these data were collected, the environmental efficiency was calculated using two methods based on the DEA. The results show that out of the 27 countries, only 12 have a relatively high environmental efficiency, although it could be improved, implementing a set of corrections. However, other countries have a low eco-efficiency performance and they must improve in the coming years. We can highlight that rich countries are closer to achieving high environmental efficiency than less developed countries. Graphical Abstract: Political map of the European Union indicating the average eco-efficiency with colors of the 27 countries of the DEA method. Supplementary Information: The online version contains supplementary material available at 10.1007/s10098-023-02553-9.

3.
Polymers (Basel) ; 15(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36772051

RESUMEN

One of the polymeric materials used in the most common 3D printers is poly(ethylene terephthalate) glycol (PETG). It represents, in world terms, around 2.3% of polymeric raw material used in additive manufacturing. However, after processing this material, its properties change irreversibly. A significant amount of waste is produced around the world, and its disposal is usually destined for landfill or incineration, which can generate an important issue due to the high environmental risks. Polymer waste from 3D printing, hereinafter 3DPPW, has a relatively high calorific value and adequate characteristics to be valued in thermochemical processes. Gasification emerges as an innovative and alternative solution for recovering energy from 3DPPW, mixed with residues of lignocellulosic origin, and presents some environmental advantages compared to other types of thermochemical treatments, since the gasification process releases smaller amounts of NOx into the atmosphere, SOx, and CO2. In the case of the study, co-gasification of olive pomace (OLB) was carried out with small additions of 3DPPW (10% and 20%) at different temperatures. Comparing the different gasifications (100% OLB, 90% OLB + 10% 3DPPW, 80% OLB + 20% 3DPPW), the best results for the synthesis gas were obtained for the mixture of 10% 3DPPW and 90% olive pomace (OLB), having a lower calorific value of 6.16 MJ/m3, synthesis gas yield of 3.19%, and cold gas efficiency of 87.85% for a gasification temperature of 750 °C. In addition, the results demonstrate that the addition of 3DPPW improved the quality of syngas, especially between temperatures of 750 and 850 °C. Including polymeric 3D printing materials in the context of the circular economy and extending their life cycle helps to improve the efficiency of subsequent industrial processes, reducing process costs in general, thanks to the new industrial value acquired by the generated by-products.

4.
Artículo en Inglés | MEDLINE | ID: mdl-35055573

RESUMEN

Currently, LED technology is an established form of lighting in our cities and homes. Its lighting performance, durability, energy efficiency and light, together with the economic savings that its use implies, are displacing other classic forms of lighting. However, some problems associated with the durability of the equipment related to the problems of thermal dissipation and high temperature have begun to be detected, which end up affecting their luminous intensity and the useful life. There are many studies that show a direct relationship between the low quality of LED lighting and the aging of the equipment or its overheating, observing the depreciation of the intensity of the light and the visual chromaticity performance that can affect the health of users by altering circadian rhythms. On the other hand, the shortened useful life of the luminaires due to thermal stress has a direct impact on the LCA (Life Cycle Analysis) and its environmental impact, which indirectly affects human health. The purpose of this article is to compare the results previously obtained, at different contour temperatures, by theoretical thermal simulation of the 3D model of LED street lighting luminaires through the ANSYS Fluent simulation software. Contrasting these results with the practical results obtained with a thermal imaging camera, the study shows how the phenomenon of thermal dissipation plays a fundamental role in the lighting performance of LED technology. The parameter studied in this work is junction temperature (Tj), and how it can be used to predict the luminous properties in the design phase of luminaires in order to increase their useful life.


Asunto(s)
Ritmo Circadiano , Iluminación , Simulación por Computador , Diseño de Equipo , Humanos
5.
Environ Sci Pollut Res Int ; 27(13): 15691-15715, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32086735

RESUMEN

In recent years, there has been growing interest in measuring the environmental efficiency of the different territories, countries, and/or nations. This has led to the development of different methods applied to the evaluation of environmental efficiency such as the data envelopment analysis (DEA) method. This method, supported by different studies, allows measuring relative environmental efficiency (eco-efficiency) and is consolidated as a very reliable method to measure the effectiveness of environmental policies in a specific geographical area. The objective of our study is the calculation of the environmental efficiency of the 28 member countries of the European Union (UE) through the DEA method. We will collect the data regarding the last years in which there are reliable comparative data in all. We will study in reference to them, the results of the environmental policies applied in the different countries, in order to make comparisons between countries and classify them according to their environmental efficiency. Using this, two variants of calculation within the DEA method to compare in a contrasted way the results of environmental efficiency for the 28 countries of the EU analyzed and propose possible solutions for improvement. Contributing in this work as main novelty the application of a new variant of the DEA method, which we will call improved analysis method (MAN) and that aims to agglutinate and assess more objectively, the results of the two DEA methods applied. The results show that there are 14 of the 28 countries that have a high relative environmental efficiency. However, we also find countries with very low environmental efficiency that should improve in the coming years. Coinciding precisely in this last group with countries recently admitted to the EU and where environmental policies have not yet been applied effectively and with positive results.


Asunto(s)
Eficiencia , Ambiente , Eficiencia Organizacional , Unión Europea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA