Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Naturwissenschaften ; 110(6): 52, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37889338

RESUMEN

Anthropogenic land use and climate change are the greatest threats to biodiversity, especially for many globally endangered reptile species. Earth snakes (Conopsis spp.) are a poorly studied group endemic to Mexico. They have limited dispersal abilities and specialized niches, making them particularly vulnerable to anthropogenic threats. Species distribution models (SDMs) were used to assess how future climate and land-cover change scenarios might influence the distribution and habitat connectivity of three earth snakes: Conopsis biserialis (Taylor and Smith), C. lineata (Kennicott), and C. nasus (Günther). Two climate models, CNRM-CM5 (CN) and MPI-ESM-LR (MP) (Representative Concentration Pathway 85), were explored with ENMeval Maxent modelling. Important SDM environmental variables and environmental niche overlap between species were also examined. We found that C. biserialis and C. lineata were restricted by maximum temperatures whereas C. nasus was restricted by minimum ones and was more tolerant to arid vegetation. C. biserialis and C. lineata were primarily distributed in the valleys and mountains of the highlands of the TMBV, while C. nasus was mainly distributed in the Altiplano Sur (Zacatecano-Potosino). C. lineata had the smallest potential distribution and suffered the greatest contraction in the future whereas C. nasus was the least affected species in future scenarios. The Sierra de las Cruces and the Sierra Chichinautzin were identified as very important areas for connectivity. Our results suggest that C. lineata may be the most vulnerable of the three species to anthropogenic and climate changes whereas C. nasus seems to be less affected by global warming than the other species.


Asunto(s)
Biodiversidad , Ecosistema , México , Cambio Climático
2.
J Genet ; 96(6): 873-883, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29321345

RESUMEN

Amphibians are globally threatened by habitat loss and fragmentation; species within the order Ambystoma are not the exception, as there are 18 species of mole salamanders in México, of which 16 are endemic and all species are under some national or international status of protection. The mole salamander, Ambystoma altamirani is a microendemic species, which is distributed in central México, within the trans-Mexican volcanic belt, and is one of the most threatened species due to habitat destruction and the introduction of exotic species. Nine microsatellite markers were used to determine the genetic structure, genetic variability, effective population size, presence of bottlenecks and inbreeding coefficient of one population of A. altamirani to generate information which might help to protect and conserve this threatened species. We found two genetic subpopulations with significant level of genetic structure (FST = 0.005) and high levels of genetic variability (Ho = 0.883; He = 0.621); we also found a small population size (Ne = 8.8), the presence of historical (M = 0.486) and recent bottlenecks under IAM and TPM models, with a low, but significant coefficient of inbreeding (FIS = -0.451). This information will help us to raise conservation strategies of this microendemic mole salamander species.


Asunto(s)
Ambystomatidae/genética , Variación Genética , Genética de Población , Animales , Ecosistema , Especies en Peligro de Extinción , Flujo Génico , Endogamia , México , Repeticiones de Microsatélite/genética , Densidad de Población
3.
Genetica ; 144(6): 689-698, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27796527

RESUMEN

Human activities are affecting the distribution of species worldwide by causing fragmentation and isolation of populations. Isolation and fragmentation lead to populations with lower genetic variability and an increased chance of inbreeding and genetic drift, which results in a loss of biological fitness over time. Studies of the genetic structure of small and isolated populations are critically important for management and conservation decisions. Ambystoma rivulare is a micro-endemic Mexican mole salamander from central Mexico. It is found in the most ecologically disturbed region in Mexico, the Trans-Mexican Volcanic Belt. The goal of this study of the population genetics of the micro-endemic mole salamander was to provide information to be used as a basis for future research and conservation planning of this species and other species of the Ambystoma genus in Mexico. The structural analysis found two subpopulations, one for each river sampled, with no signs of admixture and very high levels of genetic differentiation. Medium to high levels of heterozygosity and few alleles and genotypes were observed. Evidence of an ancestral genetic bottleneck, low values of effective population size, small inbreeding coefficients, and low gene flow were also found.


Asunto(s)
Ambystomatidae/genética , Variación Genética , Animales , Conservación de los Recursos Naturales , Flujo Génico , México , Filogenia , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA