Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 463(Pt 1): 139810, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-39293183

RESUMEN

Sorghum, a gluten-free carbohydrate source with high antioxidants and resistant starch, contains anti-nutrients like phytic acid, tannin, and kafirin. Interactions with starch and proteins result in polyphenol-starch, starch-kafirin, and tannin-protein complexes. These interactions yield responses such as V-type amylose inclusion complexes, increased hydrophobic residues, and enzyme resistance, reducing nutrient availability and elevating resistant starch levels. Factors influencing these interactions include starch composition, structure, and Chain Length Distribution (CLD). Starch structure is impacted by enzymes like ADP-glucose pyrophosphorylase, starch synthases, and debranching enzymes, leading to varied chain lengths and distributions. CLD differences significantly affect crystallinity and physicochemical properties of sorghum starch. Despite its potential, the minimal utilization of sorghum starch in food is attributed to anti-nutrient interactions. Various modification approaches, either direct or indirect, offer diverse physicochemical changes with distinct advantages and disadvantages, presenting opportunities to enhance sorghum starch applications in the food industry.

2.
Scientifica (Cairo) ; 2024: 3815651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39257674

RESUMEN

Currently, light-emitting diode (LED) technology has produced a more energy-efficient and versatile technology as an artificial lighting system that can be applied in the agricultural sector. Artificial lighting technology has been proven to be effective in increasing the production of agricultural products, especially horticultural commodities. As one of the primary horticulture commodities, tomatoes are the most common crop produced in controlled environments with LED artificial lighting. The focus of this study is to describe the application of LED lights in tomato cultivation and postharvest. We provide an amalgamation of the recent research achievements on the impact of LED lighting on photosynthesis, vegetative growth, flowering, production, and postharvest of tomatoes. Red-blue (RB) lighting induces photosynthesis; increases the content of chlorophyll a, chlorophyll b, and carotenoids in tomato leaves; regulates vegetative growth in tomatoes; and increases the production of tomatoes. In postharvest tomatoes, blue LED lighting treatment can slowly change the color of the tomato skin to red, maintain hardness, and increase shelf life. Future research may be carried out on the effect of LED artificial lighting on tomatoes' phytochemical, antioxidant and other crucial nutritional content. Different LED wavelengths can be explored to enhance various bioactive compounds and health-promoting components.

3.
Int J Food Sci ; 2024: 3254132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962097

RESUMEN

There is a continued need for the advancement of natural emulsifiers to replace synthetic emulsifiers, driven by human health concerns. This study is aimed at producing protein-polysaccharide conjugates through the Maillard reaction and at evaluating its ability as an emulsifier based on its emulsifying properties. The proteins used in this study were bovine milk whey protein and soy protein isolates, while the polysaccharides were maltodextrin and pectin. The protein-polysaccharide conjugation used a Maillard reaction under dry heating conditions. The protein and polysaccharide mass ratios were 1 : 2 and 1 : 3. The results showed that the types of proteins and polysaccharides and their mass affect the surface tension of the conjugate products. Whey protein-pectin conjugates with a mass ratio of 1 : 2 and a concentration of 1% had the lowest surface tension at 43.77 dyne/cm2. This conjugate sample also showed the highest emulsifying index at 27.20 m2/g. The conjugate powder containing pectin as a polysaccharide showed better emulsifying activity than that of those containing maltodextrin. However, the smallest droplet size of the emulsion (256.5 nm) resulted from the emulsification process using whey protein-maltodextrin conjugates as an emulsifier. The FTIR and gel electrophoresis (SDS-PAGE) analysis confirmed the conjugation formation. In general, protein-polysaccharide conjugates containing whey protein could potentially act as a natural emulsifier for food.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA