Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5817, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987270

RESUMEN

Respiratory infections caused by the human fungal pathogen Aspergillus fumigatus are a major cause of mortality for immunocompromised patients. Exposure to these pathogens occurs through inhalation, although the role of the respiratory epithelium in disease pathogenesis has not been fully defined. Employing a primary human airway epithelial model, we demonstrate that fungal melanins potently block the post-translational secretion of the chemokines CXCL1 and CXCL8 independent of transcription or the requirement of melanin to be phagocytosed, leading to a significant reduction in neutrophil recruitment to the apical airway both in vitro and in vivo. Aspergillus-derived melanin, a major constituent of the fungal cell wall, dampened airway epithelial chemokine secretion in response to fungi, bacteria, and exogenous cytokines. Furthermore, melanin muted pathogen-mediated calcium fluxing and hindered actin filamentation. Taken together, our results reveal a critical role for melanin interaction with airway epithelium in shaping the host response to fungal and bacterial pathogens.


Asunto(s)
Aspergillus fumigatus , Calcio , Quimiocina CXCL1 , Interleucina-8 , Melaninas , Melaninas/metabolismo , Humanos , Interleucina-8/metabolismo , Calcio/metabolismo , Quimiocina CXCL1/metabolismo , Animales , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/microbiología , Ratones , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Quimiocinas/metabolismo , Ratones Endogámicos C57BL
2.
mBio ; 15(8): e0335123, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953356

RESUMEN

Candida albicans causes millions of mucosal infections in humans annually. Hyphal overgrowth on mucosal surfaces is frequently associated with tissue damage caused by candidalysin, a secreted peptide toxin that destabilizes the plasma membrane of host cells thereby promoting disease and immunopathology. Candidalysin was first identified in C. albicans strain SC5314, but recent investigations have revealed candidalysin "variants" of differing amino acid sequence in isolates of C. albicans, and the related species C. dubliniensis, and C tropicalis, suggesting that sequence variation among candidalysins may be widespread in natural populations of these Candida species. Here, we analyzed ECE1 gene sequences from 182 C. albicans isolates, 10 C. dubliniensis isolates, and 78 C. tropicalis isolates and identified 10, 3, and 2 candidalysin variants in these species, respectively. Application of candidalysin variants to epithelial cells revealed differences in the ability to cause cellular damage, changes in metabolic activity, calcium influx, MAPK signalling, and cytokine secretion, while biophysical analyses indicated that variants exhibited differences in their ability to interact with and permeabilize a membrane. This study identifies candidalysin variants with differences in biological activity that are present in medically relevant Candida species. IMPORTANCE: Fungal infections are a significant burden to health. Candidalysin is a toxin produced by Candida albicans that damages host tissues, facilitating infection. Previously, we demonstrated that candidalysins exist in the related species C. dubliniensis and C. tropicalis, thereby identifying these molecules as a toxin family. Recent genomic analyses have highlighted the presence of a small number of candidalysin "variant" toxins, which have different amino acid sequences to those originally identified. Here, we screened genome sequences of isolates of C. albicans, C. dubliniensis, and C. tropicalis and identified candidalysin variants in all three species. When applied to epithelial cells, candidalysin variants differed in their ability to cause damage, activate intracellular signaling pathways, and induce innate immune responses, while biophysical analysis revealed differences in the ability of candidalysin variants to interact with lipid bilayers. These findings suggest that intraspecies variation in candidalysin amino acid sequence may influence fungal pathogenicity.


Asunto(s)
Candida albicans , Células Epiteliales , Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Humanos , Candida albicans/genética , Candida albicans/efectos de los fármacos , Células Epiteliales/microbiología , Candidiasis/microbiología , Candidiasis/inmunología , Secuencia de Aminoácidos , Variación Genética , Candida/genética , Candida/patogenicidad , Candida tropicalis/genética , Candida tropicalis/metabolismo
3.
JCI Insight ; 9(12)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713531

RESUMEN

Inhibition of Bruton's tyrosine kinase (BTK) through covalent modifications of its active site (e.g., ibrutinib [IBT]) is a preferred treatment for multiple B cell malignancies. However, IBT-treated patients are more susceptible to invasive fungal infections, although the mechanism is poorly understood. Neutrophils are the primary line of defense against these infections; therefore, we examined the effect of IBT on primary human neutrophil effector activity against Aspergillus fumigatus. IBT significantly impaired the ability of neutrophils to kill A. fumigatus and potently inhibited reactive oxygen species (ROS) production, chemotaxis, and phagocytosis. Importantly, exogenous TNF-α fully compensated for defects imposed by IBT and newer-generation BTK inhibitors and restored the ability of neutrophils to contain A. fumigatus hyphal growth. Blocking TNF-α did not affect ROS production in healthy neutrophils but prevented exogenous TNF-α from rescuing the phenotype of IBT-treated neutrophils. The restorative capacity of TNF-α was independent of transcription. Moreover, the addition of TNF-α immediately rescued ROS production in IBT-treated neutrophils, indicating that TNF-α worked through a BTK-independent signaling pathway. Finally, TNF-α restored effector activity of primary neutrophils from patients on IBT therapy. Altogether, our data indicate that TNF-α rescued the antifungal immunity block imposed by inhibition of BTK in primary human neutrophils.


Asunto(s)
Adenina , Agammaglobulinemia Tirosina Quinasa , Aspergillus fumigatus , Neutrófilos , Piperidinas , Especies Reactivas de Oxígeno , Factor de Necrosis Tumoral alfa , Humanos , Aspergillus fumigatus/inmunología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Piperidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Aspergilosis/tratamiento farmacológico , Aspergilosis/inmunología , Pirimidinas/farmacología , Fagocitosis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Pirazoles/farmacología
4.
bioRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066428

RESUMEN

Candida albicans is a fungal pathobiont colonising mucosal surfaces of the human body, including the oral cavity. Under certain predisposing conditions, C. albicans invades mucosal tissues activating EGFR-MAPK signalling pathways in epithelial cells via the action of its peptide toxin candidalysin. However, our knowledge of the epithelial mechanisms involved during C. albicans colonisation is rudimentary. Here, we describe the role of the transcription factor early growth response protein 1 (EGR1) in human oral epithelial cells (OECs) in response to C. albicans. EGR1 expression increases in OECs when exposed to C. albicans independently of fungal viability, morphology, or candidalysin release, suggesting EGR1 is involved in the fundamental recognition of C. albicans, rather than in response to invasion or 'pathogenesis'. Upregulation of EGR1 is mediated by EGFR via Raf1, ERK1/2 and NF-κB signalling but not PI3K/mTOR signalling. Notably, EGR1 mRNA silencing impacts on anti-C. albicans immunity, reducing GM-CSF, IL-1α and IL-1ß release, and increasing IL-6 and IL-8 production. These findings identify an important role for EGR1 in priming epithelial cells to respond to subsequent invasive infection by C. albicans and elucidate the regulation circuit of this transcription factor after contact.

5.
Methods Mol Biol ; 2542: 163-176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36008664

RESUMEN

In 2016, the first peptide toxin in any human fungal pathogen was identified. It was discovered in Candida albicans and was named candidalysin. Candidalysin is an amphipathic cationic peptide that damages cell membranes. Like most lytic peptides, candidalysin shows alpha-helical secondary structure. As the helicity and the membrane lytic activity of candidalysin are key factors for pathogenicity, here we describe in vitro approaches to monitor both its membrane-lytic function and the secondary structure. First, membrane permeabilization activity of candidalysin is measured in real time by direct electrical recording. Second, the secondary structure and helicity of candidalysin are determined by circular dichroism spectroscopy. These biophysical methods provide a means to characterize the activity and physical properties of candidalysin in vitro and will be useful in determining the structural and functional features of candidalysin and other similar cationic membrane-active peptides.


Asunto(s)
Proteínas Fúngicas , Micotoxinas , Candida albicans/metabolismo , Dicroismo Circular , Proteínas Fúngicas/metabolismo , Humanos , Micotoxinas/metabolismo , Péptidos/metabolismo , Virulencia
6.
J Biol Chem ; 298(10): 102419, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037968

RESUMEN

Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.


Asunto(s)
Candida albicans , Candidiasis Bucal , Receptores ErbB , Proteínas Fúngicas , Mucosa Bucal , Humanos , Candida albicans/metabolismo , Candida albicans/patogenicidad , Citocinas/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Candidiasis Bucal/metabolismo , Candidiasis Bucal/microbiología , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología
7.
mBio ; 13(1): e0351021, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35073742

RESUMEN

Candidalysin is the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is secreted by Candida albicans and is critical for driving infection and host immune responses in several model systems. However, Candida infections are also caused by non-C. albicans species. Here, we identify and characterize orthologs of C. albicans candidalysin in C. dubliniensis and C. tropicalis. The candidalysins have different amino acid sequences, are amphipathic, and adopt a predominantly α-helical secondary structure in solution. Comparative functional analysis demonstrates that each candidalysin causes epithelial damage and calcium influx and activates intracellular signaling pathways and cytokine secretion. Importantly, C. dubliniensis and C. tropicalis candidalysins have higher damaging and activation potential than C. albicans candidalysin and exhibit more rapid membrane binding and disruption, although both fungal species cause less damage to epithelial cells than C. albicans. This study identifies the first family of peptide cytolysins in human-pathogenic fungi. IMPORTANCE Pathogenic fungi kill an estimated 1.5 million people every year. Recently, we discovered that the fungal pathogen Candida albicans secretes a peptide toxin called candidalysin during mucosal infection. Candidalysin causes damage to host cells, a process that supports disease progression. However, fungal infections are also caused by Candida species other than C. albicans. In this work, we identify and characterize two additional candidalysin toxins present in the related fungal pathogens C. dubliniensis and C. tropicalis. While the three candidalysins have different amino acid sequences, all three toxins are α-helical and amphipathic. Notably, the candidalysins from C. dubliniensis and C. tropicalis are more potent at inducing cell damage, calcium influx, mitogen-activated protein kinase signaling, and cytokine responses than C. albicans candidalysin, with the C. dubliniensis candidalysin having the most rapid membrane binding kinetics. These observations identify the candidalysins as the first family of peptide toxins in human-pathogenic fungi.


Asunto(s)
Micotoxinas , Humanos , Calcio/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Candida tropicalis , Péptidos/metabolismo , Citocinas/metabolismo
8.
Methods Mol Biol ; 2260: 49-82, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33405031

RESUMEN

The epithelial cell is usually the first host cell that interacts with the microbiota present at mucosal surfaces. Although initially thought of as "bystander" cells with barrier function, the epithelial cell is now known to be a sentinel cell in the recognition and discrimination of commensal and pathogenic microorganisms and a key cell in initiating subsequent innate and adaptive immune responses. Here, we describe the main assays utilized in analyzing the activation of epithelial cell signaling (western blotting), transcription factors (TransAm), gene expression (quantitative reverse transcription PCR (qRT-PCR)), cytokine responses (ELISA, Luminex), and damage induction (lactate dehydrogenase (LDH) release). While our laboratory focuses on the epithelial response to Candida pathogens, these assays can be applied universally to analyze the activation of epithelial cells in response to any microbial pathogen.


Asunto(s)
Western Blotting , Candida/patogenicidad , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo , Animales , Supervivencia Celular , Células Epiteliales/microbiología , Células Epiteliales/patología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , L-Lactato Deshidrogenasa/metabolismo , Transducción de Señal , Factores de Transcripción/genética
9.
J Immunol ; 201(2): 627-634, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29891557

RESUMEN

Protection against microbial infection by the induction of inflammation is a key function of the IL-1 superfamily, including both classical IL-1 and the new IL-36 cytokine families. Candida albicans is a frequent human fungal pathogen causing mucosal infections. Although the initiators and effectors important in protective host responses to C. albicans are well described, the key players in driving these responses remain poorly defined. Recent work has identified a central role played by IL-1 in inducing innate Type-17 immune responses to clear C. albicans infections. Despite this, lack of IL-1 signaling does not result in complete loss of immunity, indicating that there are other factors involved in mediating protection to this fungus. In this study, we identify IL-36 cytokines as a new player in these responses. We show that C. albicans infection of the oral mucosa induces the production of IL-36. As with IL-1α/ß, induction of epithelial IL-36 depends on the hypha-associated peptide toxin Candidalysin. Epithelial IL-36 gene expression requires p38-MAPK/c-Fos, NF-κB, and PI3K signaling and is regulated by the MAPK phosphatase MKP1. Oral candidiasis in IL-36R-/- mice shows increased fungal burdens and reduced IL-23 gene expression, indicating a key role played by IL-36 and IL-23 in innate protective responses to this fungus. Strikingly, we observed no impact on gene expression of IL-17 or IL-17-dependent genes, indicating that this protection occurs via an alternative pathway to IL-1-driven immunity. Thus, IL-1 and IL-36 represent parallel epithelial cell-driven protective pathways in immunity to oral C. albicans infection.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Proteínas Fúngicas/metabolismo , Interleucina-17/metabolismo , Interleucina-1/metabolismo , Mucosa Bucal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Línea Celular , Regulación de la Expresión Génica , Inmunidad Innata , Interleucina-23/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mucosa Bucal/microbiología , Receptores de Interleucina-1/genética , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA