Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(30): 21383-21397, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38979457

RESUMEN

Tolfenamic acid (TA) is a non-steroidal anti-inflammatory drug that was studied for its photodegradation in aqueous (pH 2.0-12.0) and organic solvents (acetonitrile, methanol, ethanol, 1-propanol, 1-butanol). TA follows first-order kinetics for its photodegradation, and the apparent first-order rate constants (k obs) are in the range of 0.65 (pH 12.0) to 6.94 × 10-2 (pH 3.0) min-1 in aqueous solution and 3.28 (1-butanol) to 7.69 × 10-4 (acetonitrile) min-1 in organic solvents. The rate-pH profile for TA photodegradation is an inverted V (∧) or V-top shape, indicating that the cationic form is more susceptible to acid hydrolysis than the anionic form of TA, which is less susceptible to alkaline hydrolysis. The fluorescence behavior of TA also exhibits a V-top-shaped curve, indicating maximum fluorescence intensity at pH 3.0. TA is highly stable at a pH range of 5.0-7.0, making it suitable for formulation development. In organic solvents, the photodegradation rate of TA increases with the solvent's dielectric constant and solvent acceptor number, indicating solute-solvent interactions. The values of k obs decreased with increased viscosity of the solvents due to diffusion-controlled processes. The correlation between k obs versus ionization potential and solvent density has also been established. A total of 17 photoproducts have been identified through LC-MS, of which nine have been reported for the first time. It has been confirmed through electron spin resonance (ESR) spectrometry that the excited singlet state of TA is converted into an excited triplet state through intersystem crossing, which results in an increased rate of photodegradation in acetonitrile.

2.
ACS Appl Mater Interfaces ; 15(9): 12339-12349, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847579

RESUMEN

Conjugated polyelectrolytes (CPEs) are emerging as promising materials in the sensor field because they enable high-sensitivity detection of various substances in aqueous media. However, most CPE-based sensors have serious problems in real-world application because the sensor system is operated only when the CPE is dissolved in aqueous media. Here, the fabrication and performance of a water-swellable (WS) CPE-based sensor driven in the solid state are demonstrated. The WS CPE films are prepared by immersing a water-soluble CPE film in cationic surfactants of different alkyl chain lengths in a chloroform solution. The prepared film exhibits rapid, limited water swellability despite the absence of chemical crosslinking. The water swellability of the film enables the highly sensitive and selective detection of Cu2+ in water. The fluorescence quenching constant and the detection limit of the film are 7.24 × 106 L mol-1 and 4.38 nM (0.278 ppb), respectively. Moreover, the film is reusable via a facile treatment. Furthermore, various fluorescent patterns introduced by different surfactants are successfully fabricated by a simple stamping method. By integrating the patterns, Cu2+ detection in a wide concentration range (nM-mM) can be achieved.

3.
Anal Chim Acta ; 1233: 340489, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283779

RESUMEN

Excellent thermal and mechanical properties of aromatic polyimides (PIs) make them attractive materials in various fields. PIs is performed using polyamic acid (PAA) precursors due to their limited solubility. However, PAAs can be easily depolymerized by moisture and heat, which can degrade the properties of PIs. Therefore, quality control of PAAs is an important task in researches and industrial applications. Here, we propose a simple, rapid, and novel method to observe the depolymerization of PAAs. The method is based on the principle that, as the molecular weight of the polymer decreases, the solution viscosity decreases, and the viscosity of the solution can be easily and rapidly measured using electrochemistry. We accelerated depolymerization by applying heat to a PAA solution and measured the change in viscosity of the solution through cyclic voltammetry. The proposed method, which also makes it possible to determine the dynamic viscosity of a polymer solution, is presented as a model system to observe state changes in various polymers.


Asunto(s)
Derivados del Benceno , Polímeros , Polímeros/química , Derivados del Benceno/química , Electroquímica , Peso Molecular , Viscosidad
4.
Adv Sci (Weinh) ; 7(24): 2002134, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33344125

RESUMEN

Despite many efforts in structuring surfaces using mechanical instabilities, the practical application of these structures to advanced devices remains a challenging task due to the limited capability to control the local morphology. A platform that programs the orientation of mechanically anisotropic molecules is demonstrated; thus, the surface wrinkles, promoted by such instabilities, can be patterned in the desired manner. The optics based on a spatial light modulator assembles wrinkle pixels of a notably small dimension over a large area at fast fabrication speed. Furthermore, these pixelated wrinkles can be formed on curved geometries. The pixelated wrinkles can record images, which are naturally invisible, by mapping the gray level to the orientation of wrinkles. They can retrieve those images using the patterned optical phase retardation generated under the crossed polarizers. As a result, it is shown that the pixelated wrinkles enable new applications in optics such as image storage, informative labeling, and anti-counterfeiting.

5.
Soft Matter ; 14(25): 5327-5332, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29901063

RESUMEN

Nanoparticles may act as compatibilizing agents for blending of immiscible polymers, leading to changes in blend morphology through a variety of mechanisms including interfacial adsorption, aggregation, and nucleation of polymer crystals. Herein, we report an approach to define highly structured donor/acceptor networks based on poly(3-hexylthiophene) (P3HT) and CdSe quantum dots (QDs) by demixing from an insulating polystyrene (PS) matrix. The incorporation of QDs led to laterally phase-separated co-continuous structures with sub-micrometer dimensions, and promoted crystallization of P3HT, yielding highly interconnected P3HT/QD hybrid nanowires embedded in the polymer matrix. These nanohybrid materials formed by controlling phase separation, interfacial activity, and crystallization within ternary donor/acceptor/insulator blends, offer attractive morphologies for potential use in optoelectronics.

6.
Nanoscale ; 7(35): 14774-85, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26287395

RESUMEN

A new approach for synthesizing well-defined hollow nanochanneled-silica nanosphere particles is demonstrated, and the structural details of these particles are described for the first time. Positively charged styrene copolymer nanospheres with a clean, smooth surface and a very narrow size distribution are synthesized by surfactant-free emulsion copolymerization and used as a thermal sacrificial core template for the production of core-shell nanoparticles. A surfactant/silica composite shell with a uniform thickness is successfully produced and deposited onto the polymeric core template by charge density matching between the polymer nanosphere template surface and the negatively charged silica precursors and then followed by selective thermal decomposition of the polymeric core and the surfactant cylinder domains in the shell, producing the hollow nanochanneled-silica nanospheres. Comprehensive, quantitative structural analyses collectively confirm that the obtained nanoparticles are structurally well defined with a hollow core and a shell composed of cylindrical nanochannels that provide facile accessibility to the hollow interior space. Overall, the hollow nanochanneled-silica nanoparticles have great potential for applications in various fields.

7.
ACS Macro Lett ; 3(3): 233-239, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35590513

RESUMEN

The structural characteristics of aqueous micelles composed of amphiphilic cyclic poly(n-butyl acrylate-b-ethylene oxide) (cyclic PBA-b-PEO) or a linear analogue (i.e., linear poly(n-butyl acrylate-b-ethylene oxide-b-n-butyl acrylate) (linear PBA-b-PEO-b-PBA)) were examined for the first time using synchrotron X-ray scattering techniques and quantitative data analysis. The scattering data were analyzed using a variety of methodologies in a comprehensive complementary manner. These analyses provided details of the structural information about the micelles. Both micelles were found to consist of a core and a fuzzy shell; however, the cyclic block copolymer had a strong tendency to form micelles with core and shell parts that were more compact and dense than the corresponding parts of the linear block copolymer micelles. The PBA block of the cyclic copolymer was found to form a hydrophobic core with a density that exceeded the density of the homopolymer in the bulk state. The structural differences originated primarily from the topological difference between the cyclic and linear block copolymers. The elimination of the chain end groups (which introduced entropy and increased the excess excluded volume) from the amphiphilic block copolymer yielded more stable dense micelles in solution.

8.
Nano Lett ; 13(11): 5297-302, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24164466

RESUMEN

The ability to tune the state of dispersion or aggregation of nanoparticles within polymer-based nanocomposites, through variations in the chemical and physical interactions with the polymer matrix, is desirable for the design of materials with switchable properties. In this study, we introduce a simple and effective means of reversibly controlling the association state of nanoparticles based on the thermal sensitivity of hydrogen bonds between the nanoparticle ligands and the matrix. Strong hydrogen bonding interactions provide excellent dispersion of gold nanoparticles functionalized with poly(styrene-r-2-vinylpyridine) [P(S-r-2VP)] ligands in a poly(styrene-r-4-vinyl phenol) [P(S-r-4VPh)] matrix. However, annealing at higher temperatures diminishes the strength of these hydrogen bonds, driving the nanoparticles to aggregate. This behavior is largely reversible upon annealing at reduced temperature with redispersion occurring on a time-scale of ~30 min for samples annealed 50 °C above the glass transition temperature of the matrix. Using ultraviolet-visible absorption spectroscopy (UV-vis) and transmission electron microscopy (TEM), we have established the reversibility of aggregation and redispersion through multiple cycles of heating and cooling.

9.
BMC Plant Biol ; 13: 131, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-24024469

RESUMEN

BACKGROUND: Cellulose is an integral component of the plant cell wall and accounts for approximately forty percent of total plant biomass but understanding its mechanism of synthesis remains elusive. CELLULOSE SYNTHASE A (CESA) proteins function as catalytic subunits of a rosette-shaped complex that synthesizes cellulose at the plasma membrane. Arabidopsis thaliana and rice (Oryza sativa) secondary wall CESA loss-of-function mutants have weak stems and irregular or thin cell walls. RESULTS: Here, we identify candidates for secondary wall CESAs in Brachypodium distachyon as having similar amino acid sequence and expression to those characterized in A. thaliana, namely CESA4/7/8. To functionally characterize BdCESA4 and BdCESA7, we generated loss-of-function mutants using artificial microRNA constructs, specifically targeting each gene driven by a maize (Zea mays) ubiquitin promoter. Presence of the transgenes reduced BdCESA4 and BdCESA7 transcript abundance, as well as stem area, cell wall thickness of xylem and fibers, and the amount of crystalline cellulose in the cell wall. CONCLUSION: These results suggest BdCESA4 and BdCESA7 play a key role in B. distachyon secondary cell wall biosynthesis.


Asunto(s)
Brachypodium/enzimología , Brachypodium/metabolismo , Pared Celular/enzimología , Pared Celular/metabolismo , Glucosiltransferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucosiltransferasas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo
10.
J Phys Chem B ; 112(29): 8486-95, 2008 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-18588338

RESUMEN

In this study, we quantitatively investigated the temperature-dependent phase transition behaviors of thin films of an interesting amphiphilic diblock copolymer, poly(ethylene oxide)-b-poly(11-[4-(4-butylphenylazo)phenoxy]undecyl methacrylate) (p(EO)-b-p(MAAZ)) and the resulting morphological structures by using synchrotron grazing incidence X-ray scattering (GIXS) and differential scanning calorimetry. The quantitative GIXS analysis showed that the diblock copolymer in the homogeneous, isotropic melt state undergoes phase-separation near 190 degrees C and then forms a body-centered cubic (BCC) structure of spherical p(EO) domains in the p(MAAZ) matrix, at which point the p(EO) domains and the p(MAAZ) matrix are both in amorphous, liquid states. The BCC structure of spherical p(EO) domains is converted to a hexagonal cylinder structure near 120 degrees C, which is induced by the transformation of the isotropic phase of the p(MAAZ) matrix to the smectic A phase, which is composed of a laterally ordered structure of p(MAAZ) blocks with fully extended side groups. The resulting hexagonal cylinder structure is very stable below 120 degrees C. This microscopic hexagonal cylinder structure is retained as the smectic A phase of the p(MAAZ) matrix undergoes further transitions to smectic C near 104 degrees C and to a smectic X phase near 76 degrees C, while the amorphous, liquid phase of the p(EO) cylinders undergoes crystallization near -15 degrees C. These complicated temperature-dependent disorder-order and order-order phase transitions in the films were found to take place reversibly during the heating run. A face-centered orthorhombic structure of p(EO) domains was also found during the heating run and is an intermediate structure in the hexagonal cylinder structure to BCC structure transformation. We use these structural analysis results to propose molecular structure models at various temperatures for thin films of the diblock polymer.

11.
J Phys Chem B ; 112(17): 5338-49, 2008 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-18399680

RESUMEN

In this study, we report the first production of two-dimensionally well-ordered molecular multilayers (i.e., with a well-defined molecular lamellar structure) based on the antiparallel beta-sheet chain conformation in thin films of a brush polypeptide, poly(S-n-hexadecyl-dl-homocysteine) (PHHC), through the use of a simple spin-coating process and the quantitative structural and property analysis of the thin films using a grazing incidence X-ray scattering technique combined with Fourier transform infrared spectroscopy and differential scanning calorimetry. These analyses provide detailed information about the structure and molecular conformation of the self-assembled lamellae in the PHHC thin film, which is not easily obtained using conventional techniques. Moreover, we used the in situ measurements carried out at various temperatures and the data analyses to establish mechanisms for the evolution of the self-assembled lamellar structures in the film and for their melting. In addition, we propose molecular structure models of the PHHC polymer molecules in the thin film at various temperatures.


Asunto(s)
Modelos Químicos , Proteínas/química , Rastreo Diferencial de Calorimetría , Estructura Molecular , Estructura Secundaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Temperatura
12.
J Phys Chem B ; 112(15): 4571-82, 2008 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-18363398

RESUMEN

The crystallization behavior of microbially synthesized poly(3-hydroxybutyrate) (PHB) and its copolymers [P(HB-co-HHx)] containing 2.5, 3.4, and 12 mol % 3-hydroxyhexanoate (HHx) comonomer and the melting of the resultant crystals were studied in detail using time-resolved small-angle X-ray scattering and differential scanning calorimetry. The polyesters were found to undergo primary crystallization as well as secondary crystallization. In the primary crystallization, the thicknesses of the lamellar crystals were sensitive to the crystallization temperature, but no thickening was observed throughout the entire crystallization at a given temperature. The thickness of the lamellar crystals in the PHB homopolymer was always larger than that of the amorphous layers. In the copolymers, by contrast, the randomly distributed HHx comonomer units were found to be excluded from the lamellar crystals into the amorphous regions during the isothermal crystallization process. This interrupted the crystallization of the copolymer chains, resulting in the formation of lamellar crystals with thicknesses smaller than those of the amorphous layers. The lamellar crystals in the copolymers had lower electron densities compared to those formed in the PHB homopolymer. On the other hand, secondary crystallization favorably occurred during the later stage of isothermal crystallization in competition with the continuous primary crystallization, forming secondary crystals in amorphous regions, in particular in the amorphous layers between the primarily formed lamellar crystal stacks. Compared to the primarily formed lamellar crystals, the secondary crystals had short-range-ordered structures of smaller size, a broader size distribution, and a lower electron density.


Asunto(s)
Ácido 3-Hidroxibutírico/química , Caproatos/química , Hidroxibutiratos/química , Poliésteres/química , Ácido 3-Hidroxibutírico/síntesis química , Rastreo Diferencial de Calorimetría/métodos , Caproatos/síntesis química , Cristalización , Hidroxibutiratos/síntesis química , Estructura Molecular , Poliésteres/síntesis química , Dispersión de Radiación , Temperatura , Difracción de Rayos X
13.
J Phys Chem B ; 110(32): 15887-95, 2006 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-16898741

RESUMEN

In situ grazing incidence small-angle X-ray scattering analysis was successfully performed during the thermal processing of film blends of polymethylsilsesquioxane (PMSSQ) precursor and triethoxysilyl-terminated six-arm poly(epsilon-caprolactone) (mPCL6) porogen. In addition, thermogravimetric analysis of the films was carried out in a nitrogen atmosphere. These measurements provide important information about the structures of the blend films and of the resulting porous films. In particular, they are used in this paper to establish the mechanism of the formation of imprinted pores within the blend films. During the heating run, the sacrificial thermal degradation of the porogen component commenced at 320 degrees C, generating pores in the resulting cured PMSSQ films. Only very limited porogen aggregation occurred during the blend film formation process (spin-coating and subsequent drying), and these porogen aggregates were of relatively small size and narrow size distribution. The observed restriction of the formation of such porogen aggregates was found to result from the favorable hybridization reaction of the porogen's reactive end groups with the reactive functional groups of the PMSSQ precursor, which competes with aggregation via reaction between the porogen molecules. The average radius (or half-size) of the porogen aggregates was in the range 2.45-3.98 nm, depending on the porogen loading (10-40 wt %). The porogen aggregates retained their size and size distribution until thermal degradation, which resulted in the imprinting of nanopores in the cured PMSSQ films with size and size distribution corresponding to those of the porogen aggregates. The porosities of the resulting nanoporous films were in the range 12.4-41.7%, depending on the initial porogen loading.


Asunto(s)
Membranas Artificiales , Nanoestructuras/química , Compuestos de Organosilicio/química , Poliésteres/química , Polímeros/química , Sincrotrones , Estructura Molecular , Tamaño de la Partícula , Porosidad , Dispersión del Ángulo Pequeño , Propiedades de Superficie , Difracción de Rayos X
14.
Soft Matter ; 3(1): 117-121, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-32680202

RESUMEN

Here we report a study of the polymer chain/nanocrystal ordering in thin films (nanolayers) of regioregular poly(3-hexylthiophene) (P3HT) and blends of P3HT with a soluble fullerene derivative. A detailed analysis has been made of two dimensional (2D) grazing incidence X-ray diffraction (GIXRD) measurements with synchrotron radiation. P3HT samples with three different levels of regioregularity (RR) were synthesized and used to investigate the influence of RR on the chain ordering in thin films. Blend films were also prepared to investigate the influence of fullerene molecule addition on chain ordering. For the analysis, one dimensional (1D) GIXRD patterns were extracted from the 2D images for varying azimuthal angles, allowing information to be obtained for chain ordering in both the out-of-plane (OOP) and in-plane (IP) directions. These results show that the degree of P3HT chain ordering is strongly affected by RR, and that thermal annealing improves chain ordering in the OOP direction. This observation is in good agreement with high resolution transmission electron microscope measurements of film nanomorphology.

15.
Nanotechnology ; 17(14): 3490-8, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-19661594

RESUMEN

The miscibility and the mechanism for thermal nanopore templating in films prepared from spin-coating and subsequent drying of homogenous solutions of curable polymethylsilsesquioxane dielectric precursor and thermally labile, reactive triethoxysilyl-terminated four-armed poly(epsilon-caprolactone) porogen were investigated in detail by in situ two-dimensional grazing incidence small-angle x-ray scattering analysis. The dielectric precursor and porogen components in the film were fully miscible. On heating, limited aggregations of the porogen, however, took place in only a small temperature range of 100-140 degrees C as a result of phase separation induced by the competition of the curing and hybridization reactions of the dielectric precursor and porogen; higher porogen loading resulted in relatively large porogen aggregates and a greater size distribution. The developed porogen aggregates underwent thermal firing above 300 degrees C without further growth and movement, and ultimately left their individual footprints in the film as spherical nanopores.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA