Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(23): 20987-20999, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37332813

RESUMEN

Sulfur- and nitrogen-doped carbon quantum dots (S,N-CQDs) were synthesized using feijoa leaves as a green precursor via a novel route. Spectroscopic and microscopic methods such as X-ray photoelectron spectroscopy, fluorescence spectroscopy, and high-resolution transmission electron microscopy were used to analyze the synthesized materials. The blue emissive S,N-CQDs were applied for qualitative and quantitative determination of levodopa (L-DOPA) in aqueous environmental and real samples. Human blood serum and urine were used as real samples with good recovery of 98.4-104.6 and 97.3-104.3%, respectively. A smartphone-based fluorimeter device was employed as a novel and user-friendly self-product device for pictorial determination of L-DOPA. Bacterial cellulose nanopaper (BC) was used as a substrate for S,N-CQDs to make an optical nanopaper-based sensor for L-DOPA determination. The S,N-CQDs demonstrated good selectivity and sensitivity. The interaction of L-DOPA with the functional groups of the S,N-CQDs via the photo-induced electron transfer (PET) mechanism quenched the fluorescence of S,N-CQDs. The PET process was studied using fluorescence lifetime decay, which confirmed the dynamic quenching of S,N-CQD fluorescence. The limit of detection (LOD) of S,N-CQDs in aqueous solution and the nanopaper-based sensor was 0.45 µM in the concentration range of 1-50 µM and 31.05 µM in the concentration range of 1-250 µM, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA