Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Annu Rev Virol ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684129

RESUMEN

Research opportunities for undergraduate students are strongly advantageous, but implementation at a large scale presents numerous challenges. The enormous diversity of the bacteriophage population and a supportive programmatic structure provide opportunities to engage early-career undergraduates in phage discovery, genomics, and genetics. The Science Education Alliance (SEA) is an inclusive Research-Education Community (iREC) providing centralized programmatic support for students and faculty without prior experience in virology at institutions from community colleges to research-active universities to participate in two course-based projects, SEA-PHAGES (SEA Phage Hunters Advancing Genomic and Evolutionary Science) and SEA-GENES (SEA Gene-function Exploration by a Network of Emerging Scientists). Since 2008, the SEA has supported more than 50,000 undergraduate researchers who have isolated more than 23,000 bacteriophages of which more than 4,500 are fully sequenced and annotated. Students have functionally characterized hundreds of phage genes, and the phage collection has fueled the therapeutic use of phages for treatment of Mycobacterium infections. Participation in the SEA promotes student persistence in science education, and its inclusivity promotes a more equitable scientific community.

2.
G3 (Bethesda) ; 14(5)2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38456318

RESUMEN

Over the past decade, thousands of bacteriophage genomes have been sequenced and annotated. A striking observation from this work is that known structural features and functions cannot be assigned for >65% of the encoded proteins. One approach to begin experimentally elucidating the function of these uncharacterized gene products is genome-wide screening to identify phage genes that confer phenotypes of interest like inhibition of host growth. This study describes the results of a screen evaluating the effects of overexpressing each gene encoded by the temperate Cluster F1 mycobacteriophage Girr on the growth of the host bacterium Mycobacterium smegmatis. Overexpression of 29 of the 102 Girr genes (~28% of the genome) resulted in mild to severe cytotoxicity. Of the 29 toxic genes described, 12 have no known function and are predominately small proteins of <125 amino acids. Overexpression of the majority of these 12 cytotoxic no known functions proteins resulted in moderate to severe growth reduction and represent novel antimicrobial products. The remaining 17 toxic genes have predicted functions, encoding products involved in phage structure, DNA replication/modification, DNA binding/gene regulation, or other enzymatic activity. Comparison of this dataset with prior genome-wide cytotoxicity screens of mycobacteriophages Waterfoul and Hammy reveals some common functional themes, though several of the predicted Girr functions associated with cytotoxicity in our report, including genes involved in lysogeny, have not been described previously. This study, completed as part of the HHMI-supported SEA-GENES project, highlights the power of parallel, genome-wide overexpression screens to identify novel interactions between phages and their hosts.


Asunto(s)
Genoma Viral , Micobacteriófagos , Mycobacterium smegmatis , Mycobacterium smegmatis/virología , Micobacteriófagos/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(10): 4605-4610, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30782808

RESUMEN

Prions are infectious, self-propagating protein aggregates that are notorious for causing devastating neurodegenerative diseases in mammals. Recent evidence supports the existence of prions in bacteria. However, the evaluation of candidate bacterial prion-forming proteins has been hampered by the lack of genetic assays for detecting their conversion to an aggregated prion conformation. Here we describe a bacteria-based genetic assay that distinguishes cells carrying a model yeast prion protein in its nonprion and prion forms. We then use this assay to investigate the prion-forming potential of single-stranded DNA-binding protein (SSB) of Campylobacter hominis Our findings indicate that SSB possesses a prion-forming domain that can transition between nonprion and prion conformations. Furthermore, we show that bacterial cells can propagate the prion form over 100 generations in a manner that depends on the disaggregase ClpB. The bacteria-based genetic tool we present may facilitate the investigation of prion-like phenomena in all domains of life.


Asunto(s)
Escherichia coli/genética , Técnicas Genéticas , Priones/metabolismo , Campylobacter/genética , Campylobacter/metabolismo , Escherichia coli/metabolismo , Genes Reporteros , Priones/genética , Transcripción Genética
4.
Nat Struct Mol Biol ; 25(8): 705-714, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30076408

RESUMEN

Self-assembly of proteins into filaments, such as actin and tubulin filaments, underlies essential cellular processes in all three domains of life. The early emergence of filaments in evolutionary history suggests that filament genesis might be a robust process. Here we describe the fortuitous construction of GFP fusion proteins that self-assemble as fluorescent polar filaments in Escherichia coli. Filament formation is achieved by appending as few as 12 residues to GFP. Crystal structures reveal that each protomer donates an appendage to fill a groove between the two following protomers along the filament. This exchange of appendages resembles runaway domain swapping but is distinguished by higher efficiency because monomers cannot competitively bind their own appendages. Ample evidence for this 'runaway domain coupling' mechanism in nature suggests it could facilitate the evolutionary pathway from globular protein to polar filament, requiring a minimal extension of protein sequence and no substantial refolding.


Asunto(s)
Proteínas de Escherichia coli/química , Cristalografía por Rayos X , Proteínas Fluorescentes Verdes/química , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Ribonucleasa Pancreática/química
5.
PLoS Genet ; 13(9): e1007007, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28931012

RESUMEN

The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB.


Asunto(s)
Proteínas Bacterianas/genética , División Celular/genética , Proteínas del Citoesqueleto/genética , Proteínas de Escherichia coli/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plásmidos/genética , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo
6.
Cell Host Microbe ; 8(5): 391-3, 2010 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21075349

RESUMEN

Intracellular bacterial pathogens engage in a tug-of-war with innate host defenses. In this issue of Cell Host & Microbe, Mostowy et al. (2010) identify a role for the septin family of cytoskeletal proteins in targeting intracellular Shigella to the autophagy pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA