Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Channels (Austin) ; 3(1): 46-56, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19276663

RESUMEN

KV2.1 is the prominent somatodendritic sustained or delayed rectifier voltage-gated potassium (KV) channel in mammalian central neurons, and is a target for activity-dependent modulation via calcineurin-dependent dephosphorylation. Using hanatoxin-mediated block of KV2.1 we show that, in cultured rat hippocampal neurons, glutamate stimulation leads to significant hyperpolarizing shifts in the voltage-dependent activation and inactivation gating properties of the KV2.1-component of delayed rectifier K+ (IK) currents. In computer models of hippocampal neurons, these glutamate- stimulated shifts in the gating of the KV2.1-component of IK lead to a dramatic suppression of action potential firing frequency. Current-clamp experiments in cultured rat hippocampal neurons showed glutamate stimulation induced a similar suppression of neuronal firing frequency. Membrane depolarization also resulted in similar hyperpolarizing shifts in the voltage-dependent gating properties of neuronal IK currents, and suppression of neuronal firing. The glutamate-induced effects on neuronal firing were eliminated by hanatoxin, but not by dendrotoxin-K, a blocker of KV1.1-containing channels. These studies together demonstrate a specific contribution of modulation of KV2.1 channels in the activity-dependent regulation of intrinsic neuronal excitability.


Asunto(s)
Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Activación del Canal Iónico , Neuronas/metabolismo , Canales de Potasio Shab/metabolismo , Potenciales de Acción , Animales , Calcineurina/metabolismo , Calcio/metabolismo , Células Cultivadas , Simulación por Computador , Hipocampo/efectos de los fármacos , Hipocampo/embriología , Humanos , Cinética , Modelos Neurológicos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Péptidos/farmacología , Fosforilación , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Canales de Potasio Shab/antagonistas & inhibidores , Canales de Potasio Shab/genética , Transfección
2.
J Neurosci ; 27(49): 13552-66, 2007 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-18057213

RESUMEN

Neurons in the external segment of the globus pallidus (GPe) are autonomous pacemakers that are capable of sustained fast spiking. The cellular and molecular determinants of pacemaking and fast spiking in GPe neurons are not fully understood, but voltage-dependent Na+ channels must play an important role. Electrophysiological studies of these neurons revealed that macroscopic activation and inactivation kinetics of their Na+ channels were similar to those found in neurons lacking either autonomous activity or the capacity for fast spiking. What was distinctive about GPe Na+ channels was a prominent resurgent gating mode. This mode was significantly reduced in GPe neurons lacking functional Nav1.6 channels. In these Nav1.6 null neurons, pacemaking and the capacity for fast spiking were impaired, as was the ability to follow stimulation frequencies used to treat Parkinson's disease (PD). Simulations incorporating Na+ channel models with and without prominent resurgent gating suggested that resurgence was critical to fast spiking but not to pacemaking, which appeared to be dependent on the positioning of Na+ channels in spike-initiating regions of the cell. These studies not only shed new light on the mechanisms underlying spiking in GPe neurons but also suggest that electrical stimulation therapies in PD are unlikely to functionally inactivate neurons possessing Nav1.6 Na+ channels with prominent resurgent gating.


Asunto(s)
Potenciales de Acción/fisiología , Globo Pálido/fisiología , Activación del Canal Iónico/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Canales de Sodio/fisiología , Potenciales de Acción/genética , Animales , Simulación por Computador , Activación del Canal Iónico/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.6 , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Canales de Sodio/deficiencia , Canales de Sodio/genética , Factores de Tiempo
3.
J Neurosci ; 24(46): 10289-301, 2004 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-15548642

RESUMEN

Striatal cholinergic interneurons are critical elements of the striatal circuitry controlling motor planning, movement, and associative learning. Intrastriatal release of dopamine and inhibition of interneuron activity is thought to be a critical link between behaviorally relevant events, such as reward, and alterations in striatal function. However, the mechanisms mediating this modulation are unclear. Using a combination of electrophysiological, molecular, and computational approaches, the studies reported here show that D2 dopamine receptor modulation of Na+ currents underlying autonomous spiking contributes to a slowing of discharge rate, such as that seen in vivo. Four lines of evidence support this conclusion. First, D2 receptor stimulation in tissue slices reduced the autonomous spiking in the presence of synaptic blockers. Second, in acutely isolated neurons, D2 receptor activation led to a reduction in Na+ currents underlying pacemaking. The modulation was mediated by a protein kinase C-dependent enhancement of channel entry into a slow-inactivated state at depolarized potentials. Third, the sodium channel blocker TTX mimicked the effects of D2 receptor agonists on pacemaking. Fourth, simulation of cholinergic interneuron pacemaking revealed that a modest increase in the entry of Na+ channels into the slow-inactivated state was sufficient to account for the slowing of pacemaker discharge. These studies establish a cellular mechanism linking dopamine and the reduction in striatal cholinergic interneuron activity seen in the initial stages of associative learning.


Asunto(s)
Acetilcolina/metabolismo , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Receptores de Dopamina D2/fisiología , Canales de Sodio/fisiología , Potenciales de Acción , Animales , Cuerpo Estriado/citología , Antagonistas de los Receptores de Dopamina D2 , Técnicas In Vitro , Activación del Canal Iónico , Ratones , Ratones Endogámicos C57BL , Técnicas de Placa-Clamp , Subunidades de Proteína/genética , Receptores de Dopamina D2/agonistas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética , Tetrodotoxina/farmacología
4.
J Neurophysiol ; 91(3): 1337-49, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-13679409

RESUMEN

A slowly inactivating, low-threshold K(+) current has been implicated in the regulation of state transitions and repetitive activity in striatal medium spiny neurons. However, the molecular identity of the channels underlying this current and their biophysical properties remain to be clearly determined. Because previous work had suggested this current arose from Kv1 family channels, high-affinity toxins for this family were tested for their ability to block whole cell K(+) currents activated by depolarization of acutely isolated neurons. alpha-Dendrotoxin, which blocks channels containing Kv1.1, Kv1.2, or Kv1.6 subunits, decreased currents evoked by depolarization. Three other Kv1 family toxins that lack a high affinity for Kv1.2 subunits, r-agitoxin-2, dendrotoxin-K, and r-margatoxin, failed to significantly reduce currents, implicating channels with Kv1.2 subunits. RT-PCR results confirmed the expression of Kv1.2 mRNA in identified medium spiny neurons. Currents attributable to Kv1.2 channels activated rapidly, inactivated slowly, and recovered from inactivation slowly. In the subthreshold range (ca. -60 mV), these currents accounted for as much as 50% of the depolarization-activated K(+) current. Moreover, their rapid activation and relatively slow deactivation suggested that they contribute to spike afterpotentials regulating repetitive discharge. This inference was confirmed in current-clamp recordings from medium spiny neurons in the slice preparation where Kv1.2 blockade reduced first-spike latency and increased discharge frequency evoked from hyperpolarized membrane potentials resembling the "down-state" found in vivo. These studies establish a clear functional role for somato-dendritic Kv1.2 channels in the regulation of state transitions and repetitive discharge in striatal medium spiny neurons.


Asunto(s)
Neostriado/citología , Neostriado/fisiología , Neuronas/fisiología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/fisiología , Animales , Simulación por Computador , Dendritas/fisiología , Venenos Elapídicos/farmacología , Electrofisiología , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio Kv.1.2 , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/ultraestructura , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/biosíntesis , Canales de Potasio/efectos de los fármacos , ARN Mensajero/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Neuron ; 39(5): 793-806, 2003 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-12948446

RESUMEN

Voltage-gated Na+ channels are major targets of G protein-coupled receptor (GPCR)-initiated signaling cascades. These cascades act principally through protein kinase-mediated phosphorylation of the channel alpha subunit. Phosphorylation reduces Na+ channel availability in most instances without producing major alterations of fast channel gating. The nature of this change in availability is poorly understood. The results described here show that both GPCR- and protein kinase-dependent reductions in Na+ channel availability are mediated by a slow, voltage-dependent process with striking similarity to slow inactivation, an intrinsic gating mechanism of Na+ channels. This process is strictly associated with neuronal activity and develops over seconds, endowing neurons with a novel form of cellular plasticity shaping synaptic integration, dendritic electrogenesis, and repetitive discharge.


Asunto(s)
Activación del Canal Iónico/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Canales de Sodio/fisiología , Animales , Encéfalo/fisiología , Proteínas de Unión al GTP/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Modelos Neurológicos , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Fosforilación , Proteínas Quinasas/metabolismo , Receptores de Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA