Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Contam Hydrol ; 58(1-2): 1-12, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12236550

RESUMEN

Column experiments were carried out to investigate the influence of humic colloids on subsurface uranium migration. The columns were packed with well-characterized aeolian quartz sand and equilibrated with groundwater rich in humic colloids (dissolved organic carbon (DOC): 30 mg dm(-3)). U migration was studied under an Ar/1% CO2 gas atmosphere as a function of the migration time, which was controlled by the flow velocity or the column length. In addition, the contact time of U with groundwater prior to introduction into a column was varied. U(VI) was found to be the dominant oxidation state in the spiked groundwater. The breakthrough curves indicate that U was transported as a humic colloid-borne species with a velocity up to 5% faster than the mean groundwater flow. The fraction of humic colloid-borne species increases with increasing prior contact time and also with decreasing migration time. The migration behavior was attributed to a kinetically controlled association/dissociation of U onto and from humic colloids and also a subsequent sorption of U onto the sediment surface. The column experiments provide an insight into humic colloid-mediated U migration in subsurface aquifers.


Asunto(s)
Dióxido de Silicio , Uranio/química , Contaminantes Radiactivos del Agua , Adsorción , Cromatografía , Coloides/química , Humanos , Sustancias Húmicas/química , Purificación del Agua
2.
Talanta ; 57(5): 999-1009, 2002 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-18968705

RESUMEN

Carbon-13 cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy ((13)C-CP/MAS-NMR) was applied to study the chemical modification process of humic acids (HA) with diazomethane and the subsequent alkaline hydrolysis of the methylated HA. This modification process results in HA with selectively blocked phenolic OH groups, which can be used for metal ion binding studies with humic substances. Different chemically modified and unmodified natural and synthetic HA with carbon-13 of natural abundance were investigated. In addition, carbon-13 labeled modified synthetic HA, that were synthesized with [(13)C]diazomethane as methylation reagent, were studied to confirm the assumed modification process and to determine the type of functional groups that have the highest affinity for methylation with diazomethane. The results of the NMR studies with carbon-13 labeled modified HA show that predominantly carboxyl and phenolic OH groups are methylated with diazomethane resulting in methyl ester and methyl ether groups, respectively. Due to the alkaline treatment of the methylated HA, the methyl esters of carboxyl groups are hydrolyzed, whereas methyl ethers of phenolic OH groups remain unchanged, which results in modified HA with blocked phenolic OH groups. From the spectra of the modified and unmodified HA with carbon-13 of natural abundance it can be concluded that the applied preparative modification procedure causes only the desired structural changes in HA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA