Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Med Biol ; 68(17)2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37506710

RESUMEN

Objective. Photon counting CT (PCCT) has been a research focus in the last two decades. Recent studies and advancements have demonstrated that systems using semiconductor-based photon counting detectors (PCDs) have the potential to provide better contrast, noise and spatial resolution performance compared to conventional scintillator-based systems. With multi-energy threshold detection, PCD can simultaneously provide the photon energy measurement and enable material decomposition for spectral imaging. In this work, we report a performance evaluation of our first CdZnTe-based prototype full-size PCCT system through various phantom imaging studies.Approach.This prototype system supports a 500 mm scan field-of-view and 10 mmz-coverage at isocenter. Phantom scans were acquired using 120 kVp from 50 to 400 mAs to assess the imaging performance on: CT number accuracy, uniformity, noise, spatial resolution, material differentiation and quantification.Main results.Both qualitative and quantitative evaluations show that PCCT, under the tested conditions, has superior imaging performance with lower noise and improved spatial resolution compared to conventional energy integrating detector (EID)-CT. Using projection domain material decomposition approach with multiple energy bin measurements, PCCT virtual monoenergetic images have lower noise, and good accuracy in quantifying iodine and calcium concentrations. These results lead to increased contrast-to-noise ratio (CNR) for both high and low contrast study objects compared to EID-CT at matched dose and spatial resolution. PCCT can also generate super-high resolution images using much smaller detector pixel size than EID-CT and greatly improve image spatial resolution.Significance.Improved spatial resolution and quantification accuracy with reduced image noise of the PCCT images can potentially lead to better diagnosis at reduced radiation dose compared to conventional EID-CT. Increased CNR achieved by PCCT suggests potential reduction in iodine contrast media load, resulting in better patient safety and reduced cost.


Asunto(s)
Yodo , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Fantasmas de Imagen , Fotones
2.
Med Phys ; 33(2): 521-39, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16532960

RESUMEN

Multislice helical computed tomography (CT) is a promising noninvasive technique for coronary artery imaging. Various factors can cause inconsistencies in cardiac CT data, which can result in degraded image quality. These inconsistencies may be the result of the patient physiology (e.g., heart rate variations), the nature of the data (e.g., cone-angle), or the reconstruction algorithm itself. An algorithm which provides the best temporal resolution for each slice, for example, often provides suboptimal image quality for the entire volume since the cardiac temporal resolution (TRc) changes from slice to slice. Such variations in TRc can generate strong banding artifacts in multiplanar reconstruction images or three-dimensional images. Discontinuous heart walls and coronary arteries may compromise the accuracy of the diagnosis. A beta-blocker is often used to reduce and stabilize patients' heart rate but cannot eliminate the variation. In order to obtain robust and optimal image quality, a software solution that increases the temporal resolution and decreases the effect of heart rate is highly desirable. This paper proposes an ECG-correlated direct cone-beam reconstruction algorithm (TCOT-EGR) with cardiac banding artifact correction (CBC) and disconnected projections redundancy compensation technique (DIRECT). First the theory and analytical model of the cardiac temporal resolution is outlined. Next, the performance of the proposed algorithms is evaluated by using computer simulations as well as patient data. It will be shown that the proposed algorithms enhance the robustness of the image quality against inconsistencies by guaranteeing smooth transition of heart cycles used in reconstruction.


Asunto(s)
Algoritmos , Corazón/diagnóstico por imagen , Imagenología Tridimensional/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Animales , Artefactos , Electrocardiografía , Corazón/fisiología , Frecuencia Cardíaca/fisiología , Humanos
3.
Med Phys ; 30(12): 3233-42, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14713090

RESUMEN

Depending on the clinical application, it is frequently necessary to tilt the gantry of an x-ray CT system with respect to the patient and couch. For single-slice fan-beam systems, tilting the gantry introduces no errors or artifacts. Most current systems, however, are helical multislice systems with up to 16 slices. The multislice helical reconstruction algorithms used to create CT images must be modified to account for tilting of the gantry. If they are not, the quality of reconstructed images will be poor with the presence of significant artifacts, such as smearing and double-imaging of anatomical structures. Current CT systems employ three primary types of reconstruction algorithms: helical fan-beam approximation, advanced single-slice rebinning, and Feldkamp-based algorithms. This paper presents a generalized helical cone-beam Feldkamp-based algorithm that is valid for both tilted and nontilted orientations of the gantry. Unlike some of the other algorithms, generalization of the Feldkamp algorithm to include gantry tilt is simple and straightforward with no significant increase in computational complexity. The effect of gantry tilt for helical Feldkamp reconstruction is to introduce a lateral shift in the isocenter of the reconstructed slice of interest, which is a function of the tilt, couch speed, and view angle. The lateral shift is easily calculated and incorporated into the helical Feldkamp backprojection algorithm. A tilt-generalized helical Feldkamp algorithm has been developed and incorporated into Aquilion 16-slice CT (Toshiba, Japan) scanners. This paper describes modifications necessary for the tilt generalization and its verification.


Asunto(s)
Algoritmos , Anatomía Transversal/métodos , Cabeza/diagnóstico por imagen , Imagenología Tridimensional/métodos , Postura , Intensificación de Imagen Radiográfica/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada Espiral/métodos , Artefactos , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA