Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(11): 13858-13871, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35258292

RESUMEN

Humans have incorporated minerals in objects of cultural heritage importance for millennia. The surfaces of these objects, which often long outlast the humans that create them, are undeniably exposed to a diverse mixture of chemicals throughout their lifetimes. As of yet, the art conservation community lacks a nondestructive, accurate, and inexpensive flexible computational screening method to evaluate the potential impact of chemicals with art, as a complement to experimental studies. In this work, we propose periodic density functional theory (DFT) studies as a way to address this challenge, specifically for the aragonite phase of calcium carbonate, a mineral that has been used in pigments, marble statues, and limestone architecture since ancient times. Computational models allow art conservation scientists to better understand the atomistic impact of small-molecule adsorbates on common mineral surfaces across a wide variety of environmental conditions. To gain insight into the surface adsorption reactivity of aragonite, we use DFT to investigate the atomistic interactions present in small-molecule-surface interfaces. Our adsorbate set includes common solvents, atmospheric pollutants, and emerging contaminants. Chemicals that significantly disrupt the surface structure such as carboxylic acids and sulfur-containing molecules are highlighted. We also focus on comparing adsorption energies and changes in surface bonds, which allows for the identification of key features in the electronic structure presented in a projected-density-of-state analysis. The trends outlined here will guide future experiments and allow art conservators to gain a better understanding of how a wide range of molecules interact with an aragonite surface under variable conditions and in different environments.

2.
J Am Chem Soc ; 141(26): 10520-10529, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31244180

RESUMEN

The insertion of CO2 into a metal hydride bond to form a metal formate is a key elementary step in many catalytic cycles for CO2 conversion. Similarly, the microscopic reverse reaction, the decarboxylation of a metal formate to form a metal hydride and CO2, is important in both organic synthesis and strategies for hydrogen storage using organic liquids. There are however few experimental studies probing the mechanism of these reactions and identifying the effects of specific variables such as Lewis acid (LA) additives or solvent, which have been shown to significantly impact catalytic performance. In this study, we use a rapid mixing stopped-flow instrument to study the kinetics of CO2 insertion into the cationic ruthenium hydride [Ru(tpy)bpy)H]PF6 (tpy = 2,2':6',2″-terpyridine, bpy = 2,2'-bipyridine) in various solvents, both in the presence and in the absence of a LA. We show that LAs can increase the observed rate of this reaction and determine the first quantitative trends for the rate enhancement observed for CO2 insertion in the presence of cationic LAs, Li+ ≫ Na+ > K+ > Rb+. Furthermore, we show that the rate enhancement observed with LAs is solvent dependent. Specifically, as the acceptor number (AN) of the solvent increases, the effect of the LA becomes smaller. Last, we demonstrate that there is a significant solvent effect on CO2 insertion in the absence of a LA. Although the AN of the solvent has been previously used to predict the rate of CO2 insertion, this work shows that the best model for the rate of insertion is based on the Dimroth-Reichardt ET(30) value of the solvent, a parameter that better accounts for specific solute/solvent interactions.

3.
Chem Sci ; 9(32): 6629-6638, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30310595

RESUMEN

The insertion of CO2 into metal hydrides and the microscopic reverse decarboxylation of metal formates are important elementary steps in catalytic cycles for both CO2 hydrogenation to formic acid and methanol as well as formic acid and methanol dehydrogenation. Here, we use rapid mixing stopped-flow techniques to study the kinetics and mechanism of CO2 insertion into transition metal hydrides. The investigation finds that the most effective method to accelerate the rate of CO2 insertion into a metal hydride can be dependent on the nature of the rate-determining transition state (TS). We demonstrate that for an innersphere CO2 insertion reaction, which is proposed to have a direct interaction between CO2 and the metal in the rate-determining TS, the rate of insertion increases as the ancillary ligand becomes more electron rich or less sterically bulky. There is, however, no rate enhancement from Lewis acids (LA). In comparison, we establish that for an outersphere CO2 insertion, proposed to proceed with no interaction between CO2 and the metal in the rate-determining TS, there is a dramatic LA effect. Furthermore, for both inner- and outersphere reactions, we show that there is a small solvent effect on the rate of CO2 insertion. Solvents that have higher acceptor numbers generally lead to faster CO2 insertion. Our results provide an experimental method to determine the pathway for CO2 insertion and offer guidance for rate enhancement in CO2 reduction catalysis.

4.
Inorg Chem ; 56(22): 13655-13678, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29115825

RESUMEN

Carbon dioxide (CO2) is an appealing feedstock for the sustainable preparation of a variety of carbon-based commodity chemicals because of its high abundance, low cost, and nontoxicity. The high kinetic and thermodynamic stability of CO2, however, means that there are currently only a limited number of practical catalytic systems for the conversion of CO2 into more valuable chemicals, and continued research in this area is required. One promising approach for the eventual transformation of CO2 is to initially insert the molecule into transition-metal-element σ bonds such as M-H, M-OR, M-NR2, and M-CR3 bonds to form products of the type M-OC(O)E (E = H, OR, NR2, or CR3). CO2 insertion has been demonstrated in numerous stoichiometric reactions involving transition-metal complexes, but in cases where insertion results in the formation of strong M-O bonds, the products are often too stable to undergo further transformations. Group 9 and 10 transition-metal complexes (M = Ni, Pd, Pt, Co, Rh, or Ir) form relatively weak M-O bonds, and as a consequence, a number of group 9 and 10 transition-metal catalysts in which CO2 insertion is proposed as an elementary step in catalysis have been developed. In this Award Article, we summarize group 9 and 10 transition-metal complexes in which CO2 insertion into a metal-element σ bond to form a M-OC(O)E-type product has been observed. Mechanistic similarities and differences are highlighted by comparing CO2 insertion reactions in different types of group 9 and 10 metal-element σ bonds, and a general trend for predicting the rate-determining step of the insertion process is described based on the nucleophilicity of the element in the σ bond. Although we focus on stoichiometric reactivity, the relevance of CO2 insertion to catalytic reactions is also emphasized throughout the paper.

5.
Environ Sci Process Impacts ; 16(2): 220-31, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24441585

RESUMEN

Quantifying nanoparticle (NP) transport within porous geological media is imperative in the design of tracers and sensors to monitor the environmental impact of hydraulic fracturing that has seen increasing concern over recent years, in particular the potential pollution and contamination of aquifers. The surface chemistry of a NP defining many of its solubility and transport properties means that there is a wide range of functionality that it is desirable to screen for optimum transport. Most prior transport methods are limited in determining if significant adsorption occurs of a NP over a limited column distance, however, translating this to effects over large distances is difficult. Herein we report an automated method that allows for the simulation of adsorption effects of a dilute nanoparticle solution over large distances under a range of solution parameters. Using plasmonic silver NPs and UV-visible spectroscopic detection allows for low concentrations to be used while offering greater consistency in peak absorbance leading to a higher degree of data reliability and statistics. As an example, breakthrough curves were determined for mercaptosuccinic acid (MSA) and cysteamine (CYS) functionalized Ag NPs passing through Ottawa sand (typical proppant material) immobile phase (C) or bypassing the immobile phase (C0). Automation allows for multiple sequences such that the absorption plateau after each breakthrough and the rate of breakthrough can be compared for multiple runs to provide statistical analysis. The mobility of the NPs as a function of pH is readily determined. The stickiness (α) of the NP to the immobile phase calculated from the C/C0 ratio shows that MSA-Ag NPs show good mobility, with a slight decrease around neutral pH, while CYS-Ag NPs shows an almost sinusoidal variation. The automated process described herein allows for rapid screening of NP functionality, as a function of immobile phase (proppant versus reservoir material), hydraulic fracturing fluid additives (guar, surfactant) and conditions (pH, temperature).


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Nanopartículas del Metal/química , Minerales/química , Plata/química , Yacimiento de Petróleo y Gas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA