Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36733901

RESUMEN

Laser powder bed fusion (L-PBF) additive manufacturing (AM) requires the careful selection of laser process parameters for each feedstock material and machine, which is a laborious process. Scaling laws based on the laser power, speed, and spot size; melt pool geometry; and thermophysical properties can potentially reduce this effort by transferring knowledge from one material and/or laser system to another. Laser spot size is one critical parameter that is less well studied for scaling laws compared to laser power and scan speed. Consequently, single track laser scans were generated with a spot size (D4σ) range of 50 µm to 322 µm and melt pool aspect ratio (depth over spot radius) range from 0.1 to 7.0. These were characterized by in-situ thermography, cross-sectioning, and optical microscopy. Scaling laws from literature were applied and evaluated based on melt pool depth predictions. Scaling laws that contain a minimum of three dimensionless parameters and account for changing absorption between conduction and keyhole mode provide the most accurate melt pool depth predictions (< 35 % difference from experiments), which is comparable to thermal simulation results from literature for a select number of cases.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32166056

RESUMEN

A proper understanding of the structure and microstructure of additively manufactured (AM) alloys is essential not only to the prediction and assessment of their material properties, but also to the validation and verification of computer models needed to advance AM technologies. To accelerate AM development, as part of the AM-Bench effort, we conducted rigorous synchrotron-based X-ray scattering and diffraction experiments on two types of AM alloys (AM 15-5 stainless steel and AM Inconel 625). Taking advantage of the high penetration of synchrotron hard X-rays, we determined the phases present in these alloys under different build conditions and their statistically meaningful phase fractions using high-resolution X-ray diffraction. Using in situ multi-scale X-ray scattering and diffraction, we quantitatively analyzed the phase evolution and development of major precipitates in these alloys as a function of time during stress relief heat treatments. These results serve to validate AM microstructure models and provide input to higher-level AM processing and property models to predict the material properties and performances.

5.
Acta Mater ; 139: 244-253, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29230094

RESUMEN

Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with in situ thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA