Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 108(6): 565-583, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35106703

RESUMEN

KEY MESSAGE: Transcriptome landscape during early inflorescence developmental stages identified candidate flowering time regulators including Early Flowering 3a. Further genomics approaches validated the role of this gene in flowering time regulation. The early stages of inflorescence development in plants are as crucial as the later floral developmental stages. Several traits, such as inflorescence architecture and flower developmental timings, are determined during those early stages. In chickpea, diverse forms of inflorescence architectures regarding meristem determinacy and the number of flowers per node are observed within the germplasm. Transcriptome analysis in four desi chickpea accessions with such unique inflorescence characteristics identifies the underlying shared regulatory events leading to inflorescence development. The vegetative to reproductive stage transition brings about major changes in the transcriptome landscape. The inflorescence development progression associated genes identified through co-expression network analysis includes both protein-coding genes and long non-coding RNAs (lncRNAs). Few lncRNAs identified in our study positively regulate flowering-related mRNA stability by acting competitively with miRNAs. Bulk segregrant analysis and association mapping narrowed down an InDel marker regulating flowering time in chickpea. Deletion of 11 bp in first exon of a negative flowering time regulator, Early Flowering 3a gene, leads to early flowering phenotype in chickpea. Understanding the key players involved in vegetative to reproductive stage transition and floral meristem development will be useful in manipulating flowering time and inflorescence architecture in chickpea and other legumes.


Asunto(s)
Cicer , Cicer/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Inflorescencia/genética , Meristema/genética , Fenotipo , Transcriptoma
2.
Plant J ; 98(5): 864-883, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30758092

RESUMEN

Plant height (PH) and plant width (PW), two of the major plant architectural traits determining the yield and productivity of a crop, are defined by diverse morphometric characteristics of the shoot apical meristem (SAM). The identification of potential molecular tags from a single gene that simultaneously modulates these plant/SAM architectural traits is therefore prerequisite to achieve enhanced yield and productivity in crop plants, including chickpea. Large-scale multienvironment phenotyping of the association panel and mapping population have ascertained the efficacy of three vital SAM morphometric trait parameters, SAM width, SAM height and SAM area, as key indicators to unravel the genetic basis of the wide PW and PH trait variations observed in desi chickpea. This study integrated a genome-wide association study (GWAS); quantitative trait locus (QTL)/fine-mapping and map-based cloning with molecular haplotyping; transcript profiling; and protein-DNA interaction assays for the dissection of plant architectural traits in chickpea. These exertions delineated natural alleles and superior haplotypes from a CabHLH121 transcription factor (TF) gene within the major QTL governing PW, PH and SAM morphometric traits. A genome-wide protein-DNA interaction assay assured the direct binding of a known stem cell master regulator, CaWUS, to the WOX-homeodomain TF binding sites of a CabHLH121 gene and its constituted haplotypes. The differential expression of CaWUS and transcriptional regulation of its target CabHLH121 gene/haplotypes were apparent, suggesting their collective role in altering SAM morphometric characteristics and plant architectural traits in the contrasting near isogenic lines (NILs). The NILs introgressed with a superior haplotype of a CabHLH121 exhibited optimal PW and desirable PH as well as enhanced yield and productivity without compromising any component of agronomic performance. These molecular signatures of the CabHLH121 TF gene have the potential to regulate both PW and PH traits through the modulation of proliferation, differentiation and maintenance of the meristematic stem cell population in the SAM; therefore, these signatures will be useful in the translational genomic study of chickpea genetic enhancement. The restructured cultivars with desirable PH (semidwarf) and PW will ensure maximal planting density in a specified cultivable field area, thereby enhancing the overall yield and productivity of chickpea. This can essentially facilitate the achievement of better remunerative outputs by farmers with rational land use, therefore ensuring global food security in the present scenario of an increasing population density and shrinking per capita land area.


Asunto(s)
Biomasa , Cicer/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Meristema/genética , Brotes de la Planta/genética , Alelos , Mapeo Cromosómico , Cicer/anatomía & histología , Cicer/metabolismo , Genes de Plantas/genética , Genoma de Planta/genética , Genómica/métodos , Genotipo , Haplotipos , Meristema/anatomía & histología , Meristema/metabolismo , Brotes de la Planta/anatomía & histología , Brotes de la Planta/metabolismo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA